Discretization

Number representations

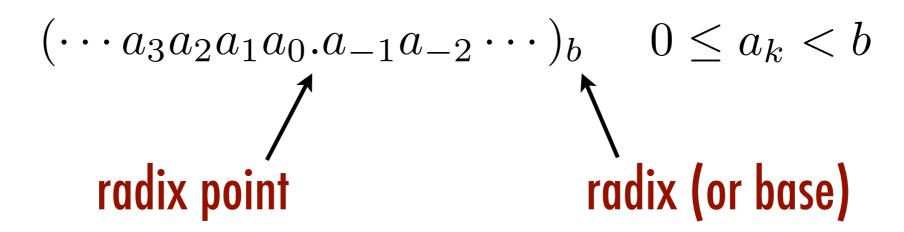
- The obvious strategies ...
 - simple enumeration:
 - ► labelling: e.g., Roman numerals
- For computation, we need a systematic number representation in which basic arithmetic operations are mechanistic

I
II
III
IV
٧
VI
VII
/III
IX

	<u> </u>
10	X
20	XX
30	XXX
40	XL
50	L
100	С
500	D
1000	M
1998	MCMXCVIII

// /// //// ////

positional notation



conventional number system

$$b = 10$$
 $a_k \in \{0, 1, 2, \dots, 9\}$

- ▶ base 2: 10010111₂
- ▶ base 8: 1735₈
- base 10: 0, 234, 1983
- base 16: 3F7A
- base 60: 23° 44′ 12″

```
    ▶ base 2: 10010111₂ ← binary
    ▶ base 8: 1735<sub>8</sub> ← octal (octonal)
    ▶ base 10: 0, 234, 1983 ← decimal
    ▶ base 16: 3F7A ← hexadecimal (sexadecimal)
    ▶ base 60: 23° 44′ 12″ ← sexagesimal
```

```
base 2: 10010111<sub>2</sub>
```

▶ base 8: 1735₈

base 10: 0, 234, 1983

base 16: 3F7A

▶ base 60: 23° 44′ 12″

```
10010111<sub>2</sub>

trailing (least significant) digit significant digit)
```

- ▶ base 2: 100101112
- ▶ base 8: 1735₈
- base 10: 0, 234, 1983
- ▶ base 16: 3F7A
- ▶ base 60: 23° 44′ 12″

$$= 27 + 24 + 22 + 21 + 20$$
$$= 128 + 32 + 4 + 2 + 1$$
$$= 167$$

- ▶ base 2: 10010111₂
- ▶ base 8: 1735₈
- base 10: 0, 234, 1983
- ▶ base 16: 3F7A
- ▶ base 60: 23° 44′ 12″

$$= 1 \cdot 8^{3} + 7 \cdot 8^{2} + 3 \cdot 8^{1} + 5 \cdot 8^{0}$$

$$= 512 + 7 \cdot 64 + 3 \cdot 8 + 5$$

$$= 989$$

- ▶ base 2: 10010111₂
- ▶ base 8: 1735₈
- base 10: 0, 234, 1983

conventional hexadecimal digits

$$a_k \in \{0, \dots, 9, A, B, C, D, E, F\}$$

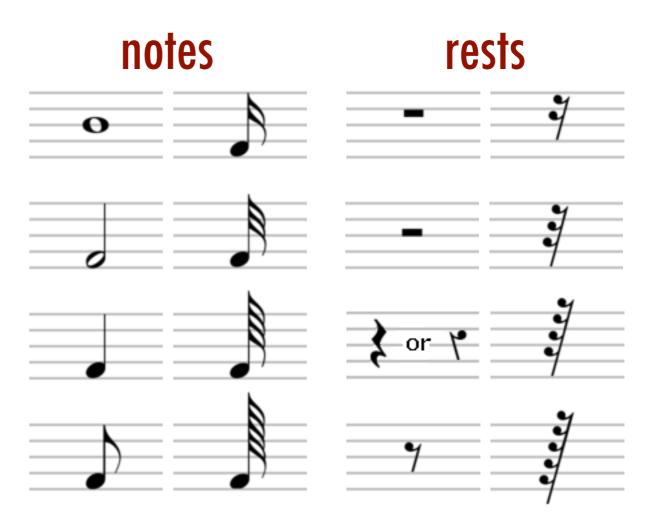
$$= 3 \cdot 16^3 + 15 \cdot 16^2 + 7 \cdot 16^1 + 10 \cdot 16^0$$

$$= 3 \cdot 4096 + 15 \cdot 256 + 7 \cdot 16 + 10$$

$$= 16250$$

Binary systems

Western system of musical notation



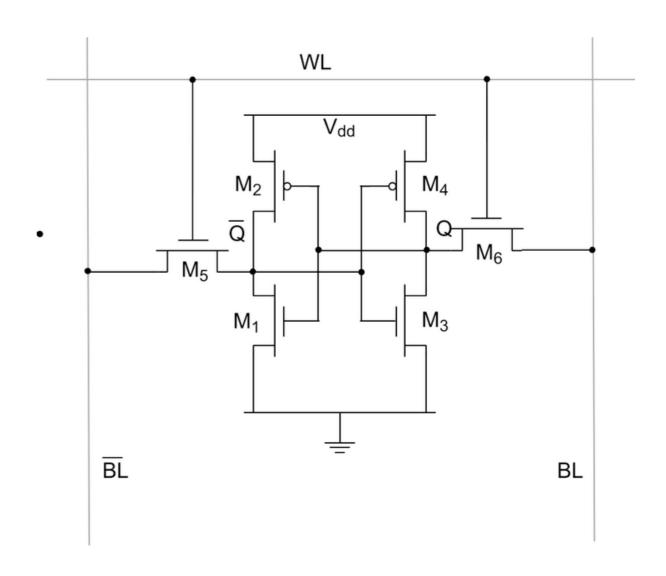
Binary systems

English system of weights and measures

```
2 gills = I chopin
    2 \text{ chopins} = 1 \text{ pint}
       2 pints = I quart
      2 quarts = I pottle
     2 pottles = I gallon
     2 gallons = I peck
      2 pecks = I demibushel
2 demibushels = I firkin
      2 firkins = 1 kilderkin
  2 kilderkins = I barrel
     2 barrels = I hogshead
 2 hogsheads = I pipe
       2 \text{ pipes} = 1 \text{ tun}
```

Binary systems

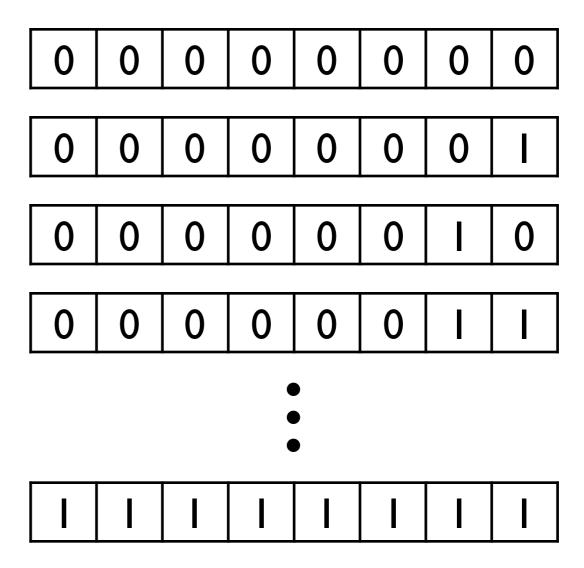
- a modern digital computer stores information in a memory cell called a "bit"
- the four-transistor
 arrangement has two
 stable internal states,



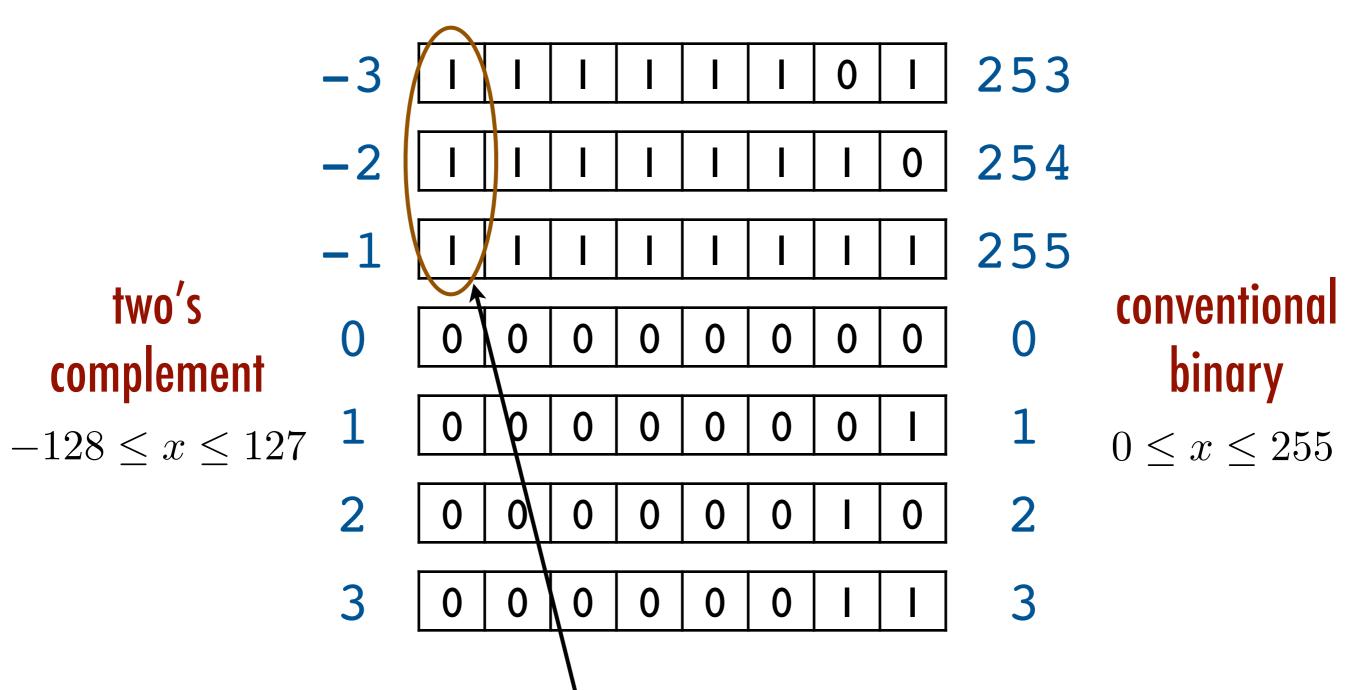
memory transistors M1,...,M4 access transistors M5,M6

Fixed-width binary

- An unsigned, 8-bit binary number can represent the natural numbers 0 − 255
- There are 28 unique patterns of 0 and 1



Fixed-width binary

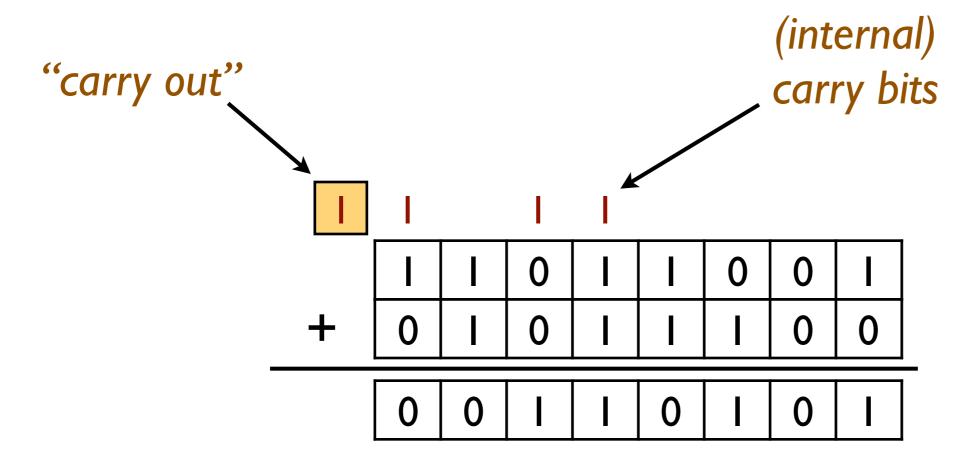


sign information resides in the high bit

Potential dangers

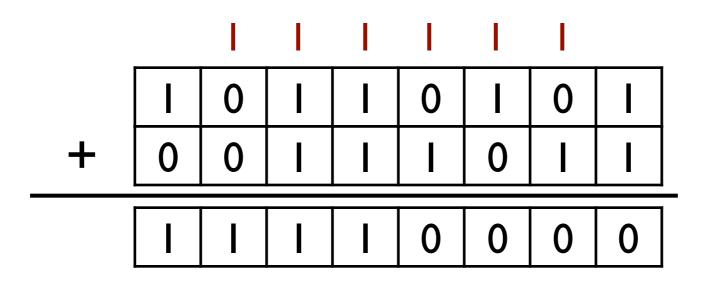
- Fixed-width binary numbers can represent only a limited range of integers
- The result of an operation (such as addition or multiplication) performed on pairs of representable integers may not be representable itself!
- This condition is called "overflow"
- Wait, does this really matter? Yes, there many famous real-life examples (YouTube: ariane 5 explosion)

- Unique bit representation for zero
- Algebraic operations—in terms of the manipulation of the underlying bit representations—are identical for unsigned and two's complement numbers
- Single hardware implementation; only the interpretation changes with context



$$217+92==53$$
overflow

$$-39+92==53$$
correct



- Straightforward to detect overflow:
 - If the sum of two positive numbers yields a negative result, the sum has overflowed
 - If the sum of two negative numbers yields a positive result, the sum has overflowed
- In two's complement, carry out does not indicate an overflow condition

C++ integer types

Only relative sizes guaranteed; on the Intel architecture . . .

```
0|0|0|0|0|0|0 char
8 bits, 1 byte (on all platforms)
 0|0|0|0|0|0|0|0|0|0|0|0|0|0
                    short int
2 bytes, 1 word
                          int, long int
```

4 bytes, 1 double word

C++ integer types

Types of fixed width available in C++ #include <stdint> 0|0|0|0|0|0|0| int8 t, uint8_t 8 bits, 1 byte 0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| int16 t, uint16 16 bits, 2 bytes int32 t, uint 32

32 bits, 4 bytes

Arithmetic operators

prefix

increment

```
integer 0–255
unsigned char a = 3;
a = 5; // or: a = a - 5;
assert(a == 254);
                                  - integer -128—127
char b = 64;
b = (++)b*2;
assert(b == -126);
int x = 2*(21+4);
int y = 5 + (x++/17);
                              - truncation rather
assert(x == 51);
assert(y == 5 + 2);
                                than rounding
for (int i = 0; i < 1000; ++i)
   if (18)5 == 0) do_something();
                    modulus
```

enumerated type

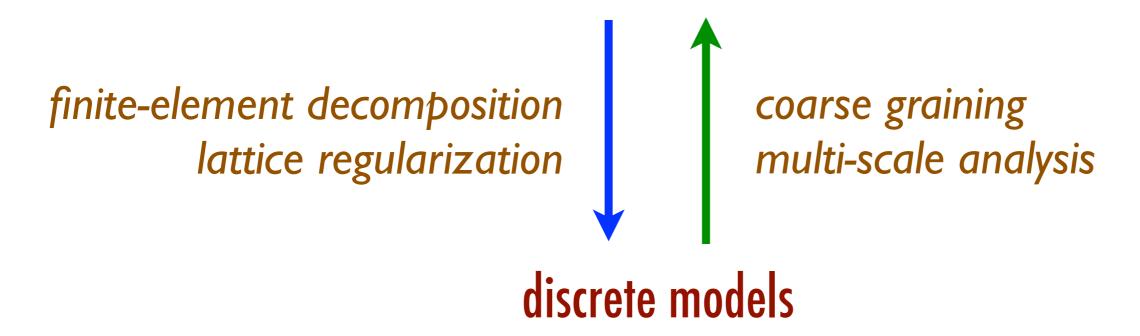
Bitwise operators

```
enum directions { N = 1, E = 2, S = 4, W = 8 };
            const uint8 t opt1 = 020; // 2*8 == 16
            const uint8 t opt2 = 0x20; // 2*16 == 32
            unsigned char flags = N | W;
            assert( (flags & N)) and (flags & W) ); \sim octal and hex
   set,
            flags(|=)S | E;
                                                - test bits
  clear,
            assert( flags == N | S | E | W );
and toggle
            flags(\&=)~S;
            assert( flags == N | E | W );
            flags(^=)N \mid E \mid opt1;
            assert( flags == W | opt1 );
            flags ^= opt1 | opt2;
            assert(!(flags & opt1) and (flags & opt2));
```

Discretization

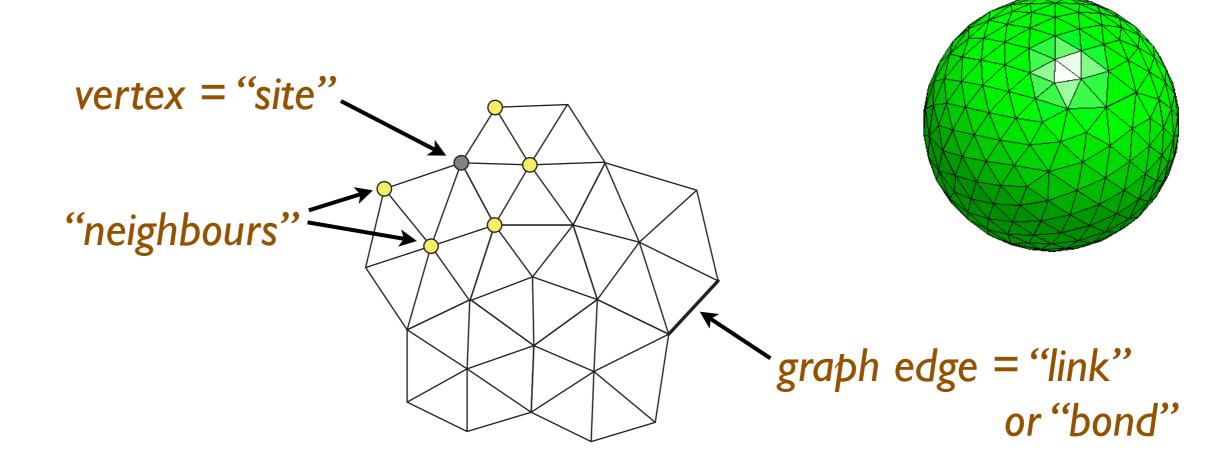
- Computers cannot naturally handle continuous properties
- But the granularity of a simulation is not apparent on sufficiently long length scales

"Physical Laws"



Spatial grids

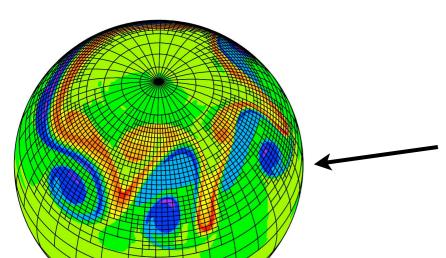
- Replace continuous manifold by a mesh of points
- Topology is encoded by their connectivity



Adaptive mesh

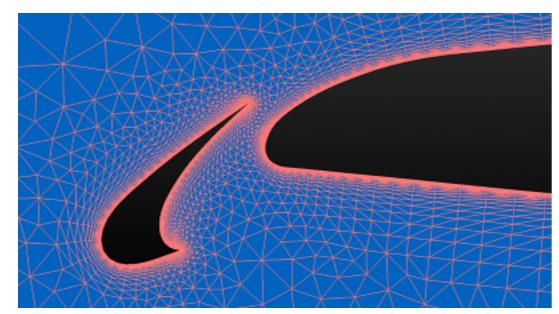
- Inhomogeneous arrangement of points
- optimized so that their local density and connectivity track some key physical property
- the presence of many different length scales provides a hierarchy of resolutions
- grid may be static or dynamic; the latter sometimes offers big savings in storage and computational effort

Adaptive mesh

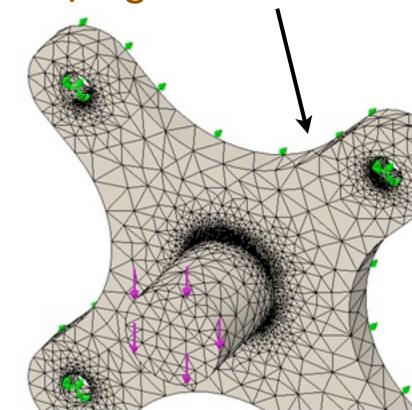


modelling of ocean currents with the grid resolution tied to the local vorticity field; recursive, squares-within-squares geometry

mesh of triangles whose area is inversely proportional to the speed of air flow around an aerofoil



materials modelling with small finite elements at points of high stress

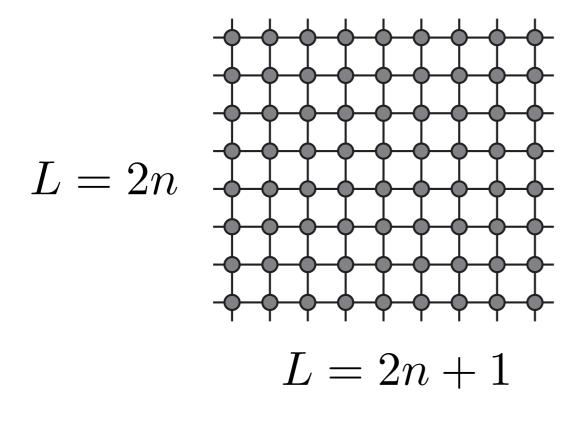


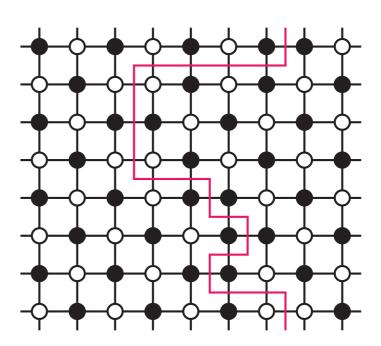
Lattices

- Uniform mesh of infinite repeating units related to an underlying Bravais lattice
- Exhibits definite space and point group symmetries (translation, rotation, reflection, ...)
- How to connect boundary sites in a finite sample?
- Can the symmetries be preserved?

Lattices

- Compatibility of boundary conditions with ordered states
- Possibility of even/odd effects

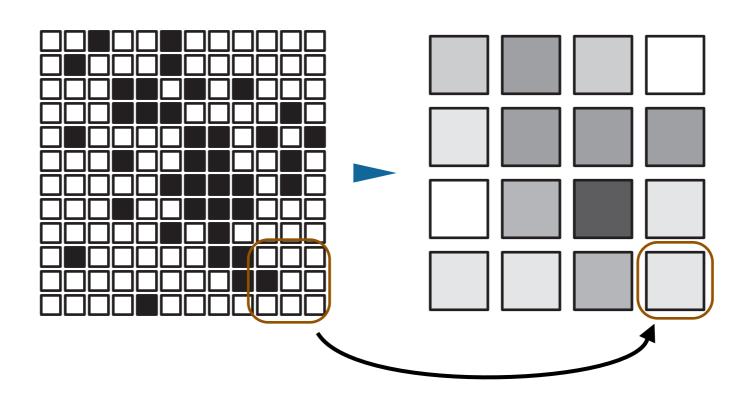




AFM order with a line of mismatches

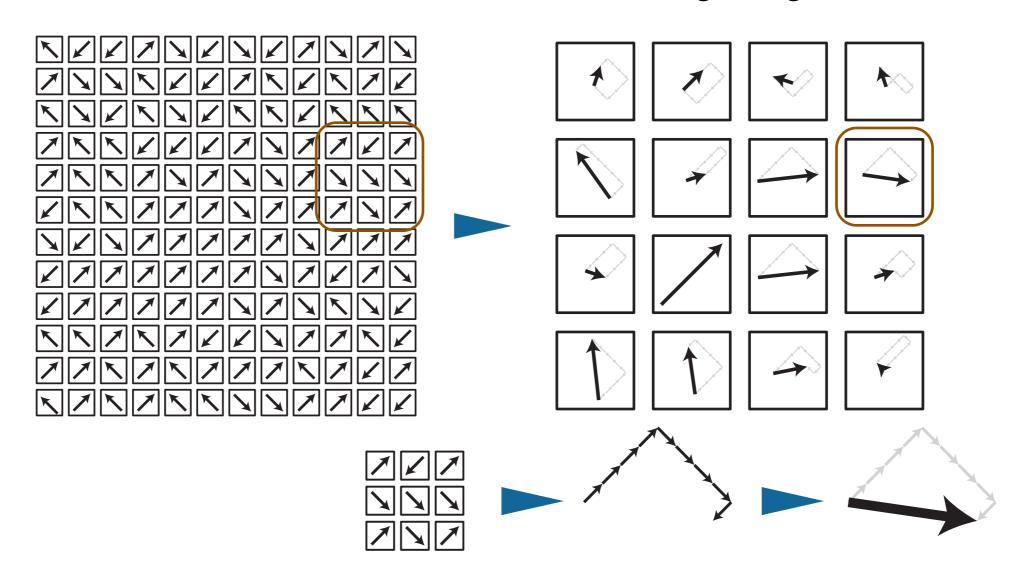
Coarse graining

- Process of spatial averaging over local regions
- E.g., 3x3 averaging of binary cells gives distinct 10 levels
- Recover continuous scalar field in large region limit

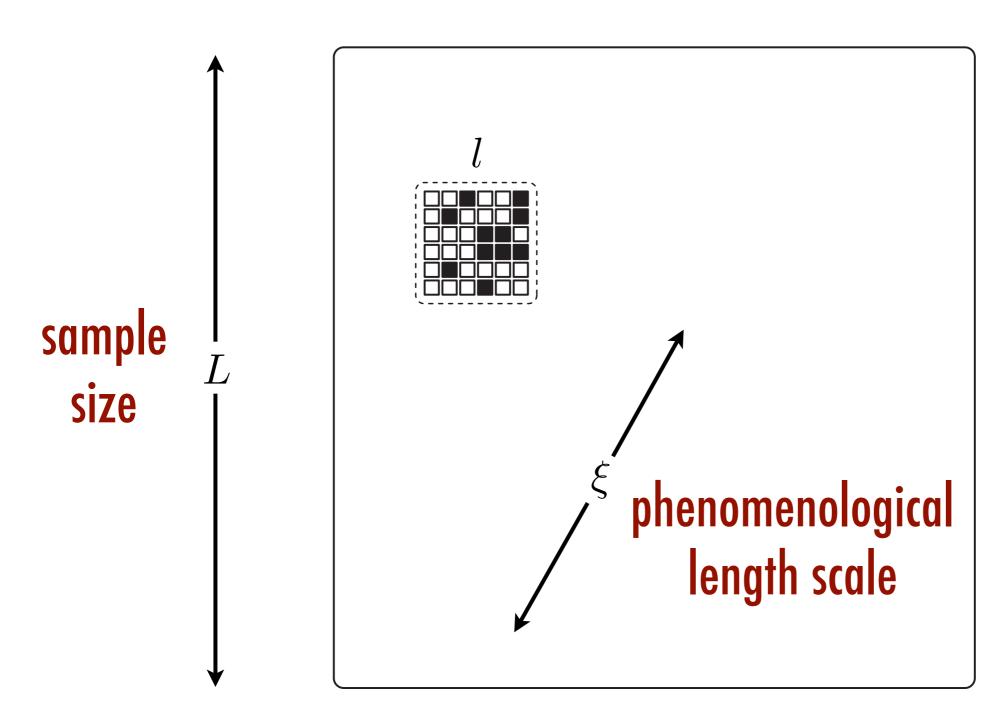


Coarse graining

- ► E.g., 3x3 averaging of 4-state clocks
- Recover continuous vector field in large region limit



Hierarchy of length scales



key requirement:

$$l \ll \xi \ll L$$

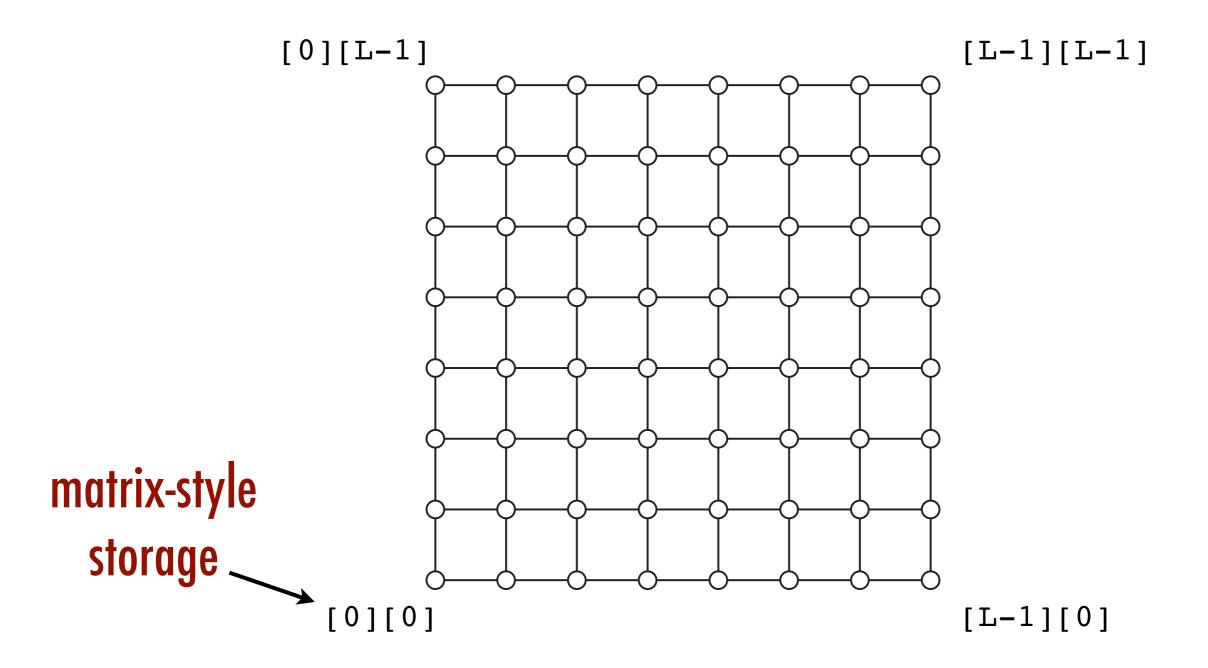
Spatial data structures

- Associate properties with each site (or link) of a lattice
- Encode some sense of which sites are neighbours
- For hypercubic lattices, the setup is trivial with C arrays:

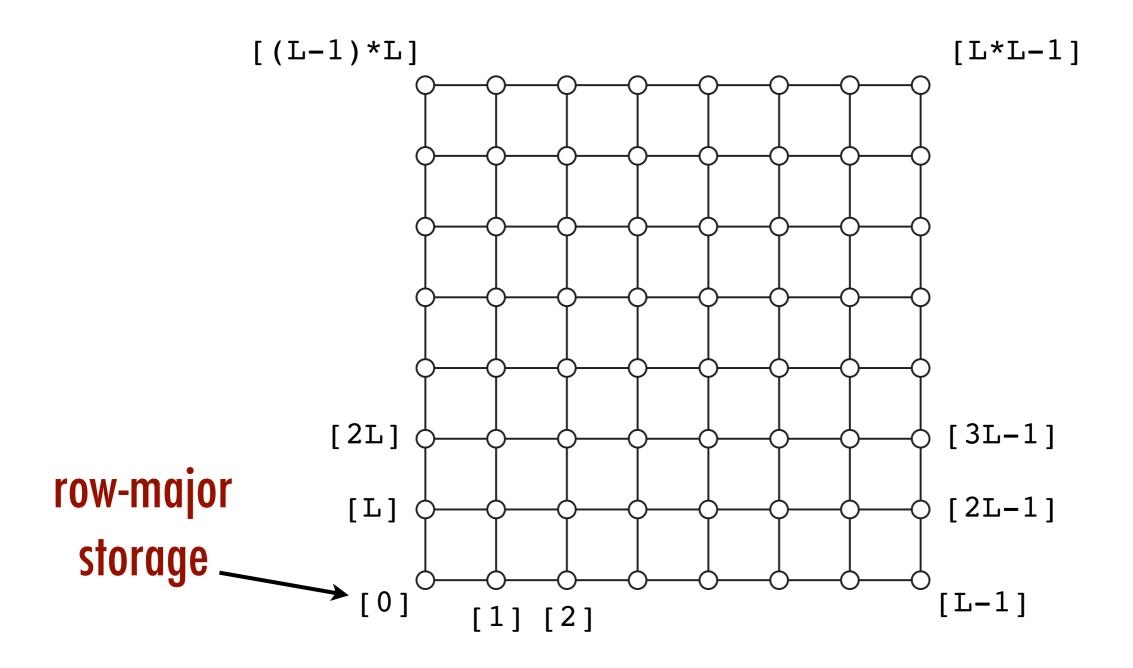
```
// square lattice as 2D array
int lattice[100][100];
lattice[60][99] = 0;

// square lattice as 1D array
int lattice[100*100];
inline int index(int i, int j)
{ return i+j*L; }
lattice[index(60,99)] = 0;
```

Square lattice



Square lattice



Square lattice

A and B sublattices

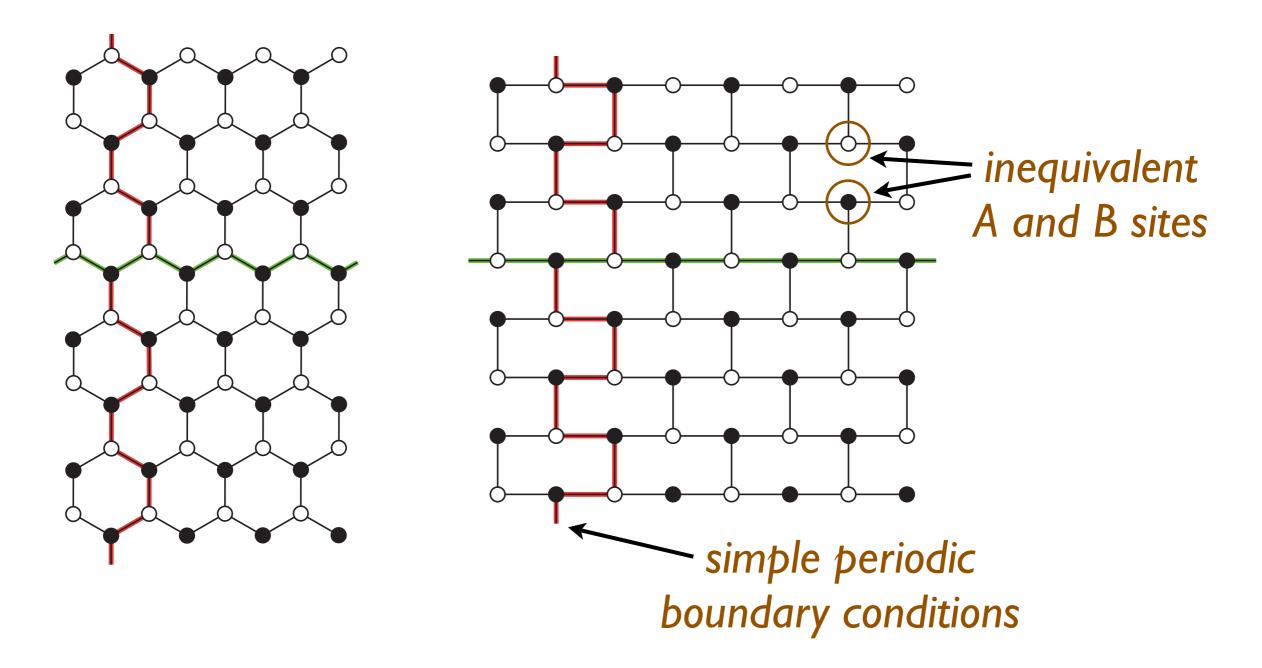
(L%2==0) $index(i,(j+1)%L) \longrightarrow \bigcirc index(i,j)$ index(i,j) index(i,j) index((L+i-1)%L,j) index((i+1)%L,j) index(i,j) - index(i,(L+j-1)%L)

Square lattice class

```
#include <vector>
using std::vector;
template <typename T>
class square lattice
private:
   const int L; vector<T> data;
public:
   square lattice(int L ) : L(L ), data(L*L) {}
   T& operator()(int i, int j) { return data[i+j*L]; }
   int length(void) { return L; }
};
struct cell { int speciesA, speciesB; };
square lattice < cell> lattice(20);
for (int i = 0; i < lattice.length(); ++i)</pre>
   lattice(4,i).speciesA = 3;
```

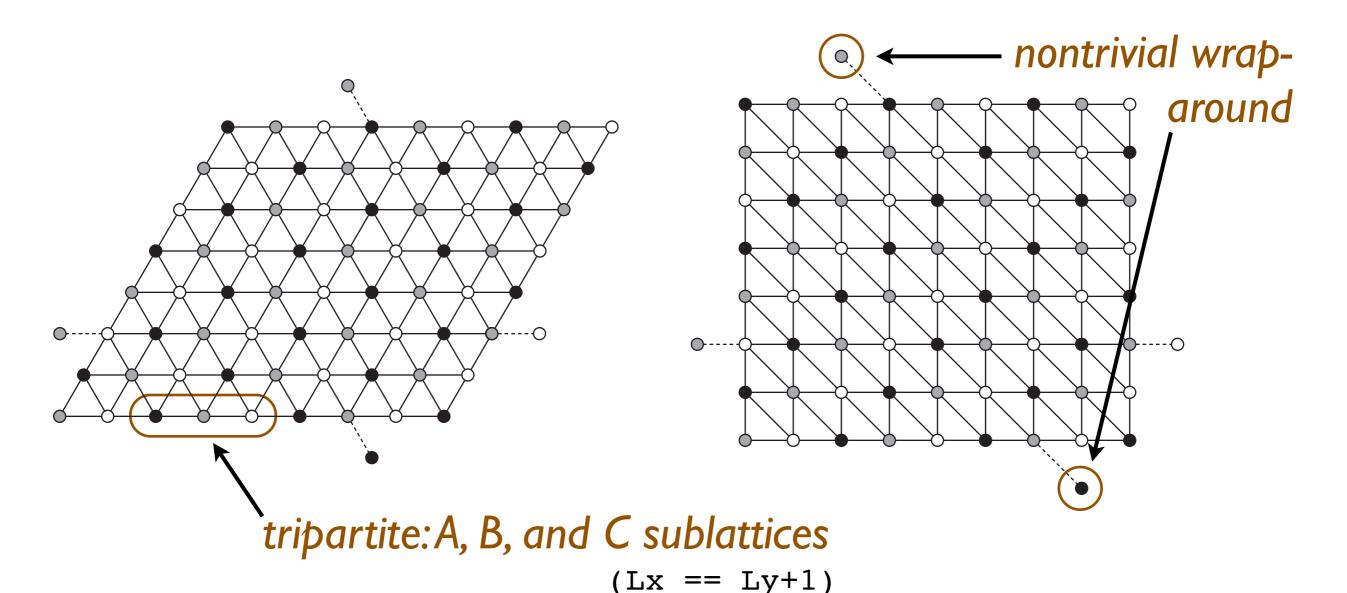
Honeycomb lattice

Topology preserved when distorted to a brick-wall lattice



Triangular lattice

Topology preserved when sheared to orthogonal axes



Kagomé lattice

Further deplete the triangular lattice

