
Discretization

Phys 750 Lecture 2



Number representations

‣ The obvious strategies ...  

‣ simple enumeration: 

‣ labelling: e.g., Roman numerals 

‣ For computation, we need a systematic 
number representation in which basic 
arithmetic operations are mechanistic

1 I

2 II

3 III

4 IV

5 V

6 VI

7 VII

8 VIII

9 IX

10 X

20 XX

30 XXX

40 XL

50 L

100 C

500 D

1000 M

1998  MCMXCVIII



Positional number systems
‣ positional notation 
 
 
 

‣ conventional number system

(· · · a3a2a1a0.a�1a�2 · · · )b 0 � ak < b

b = 10

radix point radix (or base)

ak � {0, 1, 2, . . . , 9}



Positional number systems

‣ base 2: 100101112 

‣ base 8: 17358 

‣ base 10: 0, 234, 1983 

‣ base 16: 3F7A 

‣ base 60: 23o 44’ 12’’



Positional number systems

binary

octal (octonal)

decimal

hexadecimal (sexadecimal)

sexagesimal

‣ base 2: 100101112 

‣ base 8: 17358 

‣ base 10: 0, 234, 1983 

‣ base 16: 3F7A 

‣ base 60: 23o 44’ 12’’



Positional number systems

100101112

leading (most 
significant digit)

trailing (least 
significant) digit

‣ base 2: 100101112 

‣ base 8: 17358 

‣ base 10: 0, 234, 1983 

‣ base 16: 3F7A 

‣ base 60: 23o 44’ 12’’



Positional number systems

= 27 + 24 + 22 + 21 + 20

= 128 + 32 + 4 + 2 + 1
= 167

‣ base 2: 100101112 

‣ base 8: 17358 

‣ base 10: 0, 234, 1983 

‣ base 16: 3F7A 

‣ base 60: 23o 44’ 12’’



Positional number systems

= 1 · 83 + 7 · 82 + 3 · 81 + 5 · 80

= 512 + 7 · 64 + 3 · 8 + 5
= 989

‣ base 2: 100101112 

‣ base 8: 17358 

‣ base 10: 0, 234, 1983 

‣ base 16: 3F7A 

‣ base 60: 23o 44’ 12’’



Positional number systems

= 3 · 163 + 15 · 162 + 7 · 161 + 10 · 160

= 3 · 4096 + 15 · 256 + 7 · 16 + 10
= 16250

conventional hexadecimal digits
ak � {0, . . . , 9,A,B,C,D,E,F}

‣ base 2: 100101112 

‣ base 8: 17358 

‣ base 10: 0, 234, 1983 

‣ base 16: 3F7A 

‣ base 60: 23o 44’ 12’’



Binary systems

‣ Western system of 
musical notation

notes rests



Binary systems

‣ English system of 
weights and measures

2 gills = 1 chopin

2 chopins = 1 pint

2 pints = 1 quart

2 quarts = 1 pottle

2 pottles = 1 gallon

2 gallons = 1 peck

2 pecks = 1 demibushel

2 demibushels = 1 firkin

2 firkins = 1 kilderkin

2 kilderkins = 1 barrel

2 barrels = 1 hogshead

2 hogsheads = 1 pipe

2 pipes = 1 tun



Binary systems
‣ a modern digital 

computer stores 
information in a 
memory cell called a 
“bit” 

‣ the four-transistor 
arrangement has two 
stable internal states, memory transistors M1,...,M4

access transistors M5,M6



Fixed-width binary

‣ An unsigned, 8-bit 
binary number can 
represent the natural 
numbers 0 — 255 

‣ There are 28 unique 
patterns of 0 and 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1



Fixed-width binary

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

0

1

2

3

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 1

255

254

253

0

1

2

3

-1

-2

-3

conventional 
binary

two’s 
complement

sign information resides in the high bit

0 � x � 255�128 ⇥ x ⇥ 127



Potential dangers
‣ Fixed-width binary numbers can represent only a 

limited range of integers 

‣ The result of an operation (such as addition or 
multiplication) performed on pairs of representable 
integers may not be representable itself!  

‣ This condition is called “overflow” 

‣ Wait, does this really matter? Yes, there many famous 
real-life examples (YouTube: ariane 5 explosion)



Why two’s complement?

‣ Unique bit representation for zero 

‣ Algebraic operations—in terms of the manipulation of the 
underlying bit representations—are identical for unsigned 
and two’s complement numbers 

‣ Single hardware implementation; only the interpretation 
changes with context



Why two’s complement?

1 1 0 1 1 0 0 1
0 1 0 1 1 1 0 0+
0 0 1 1 0 1 0 1

1111

-39+92==53217+92==53
correctoverflow

(internal)  
carry bits“carry out”



Why two’s complement?

1 0 1 1 0 1 0 1
0 0 1 1 1 0 1 1+
1 1 1 1 0 0 0 0

11

-75+59==-16 181+92==-16

1111

correct overflow



Why two’s complement?
‣ Straightforward to detect overflow: 

‣ If the sum of two positive numbers yields a negative 
result, the sum has overflowed 

‣ If the sum of two negative numbers yields a positive 
result, the sum has overflowed 

‣ In two's complement, carry out does not indicate an 
overflow condition



C++ integer types

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

char

short int

int, long int

‣ Only relative sizes guaranteed; on the Intel architecture . . . 

8 bits, 1 byte (on all platforms)

2 bytes, 1 word

4 bytes, 1 double word



C++ integer types

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

int8_t, uint8_t

int16_t, uint16

int32_t, uint_32

‣ Types of fixed width available in C++

8 bits, 1 byte

16 bits, 2 bytes

32 bits, 4 bytes

#include <stdint>



Arithmetic operators
unsigned char a = 3;
a -= 5; // or: a = a - 5;
assert(a == 254);

char b = 64;
b = ++b*2;
assert(b == -126);

int x = 2*(21+4);
int y = 5 + x++/17;
assert(x == 51);
assert(y == 5 + 2);

for (int i = 0; i < 1000; ++i)
   if (i%15 == 0) do_something();

integer 0–255

integer -128–127

prefix 
increment

modulus

truncation rather 
than rounding



Bitwise operators
enum directions { N = 1, E = 2, S = 4, W = 8 };
const uint8_t opt1 = 020;   //  2*8 == 16
const uint8_t opt2 = 0x20;  // 2*16 == 32

unsigned char flags = N | W;
assert( (flags & N) and (flags & W) );

flags |= S | E;
assert( flags == N | S | E | W );

flags &= ~S;
assert( flags == N | E | W );

flags ^= N | E | opt1;
assert( flags == W | opt1 );
flags ^= opt1 | opt2;
assert( !(flags & opt1) and (flags & opt2) );

enumerated 
type

test bits
set, 

clear, 
and toggle 

bits

octal and hex



Discretization
‣ Computers cannot naturally handle continuous properties 

‣ But the granularity of a simulation is not apparent on 
sufficiently long length scales

“Physical Laws”

discrete models

finite-element decomposition
lattice regularization

coarse graining
multi-scale analysis



Spatial grids

vertex = “site”

graph edge = “link”  
                 or “bond”

‣ Replace continuous manifold by a mesh of points 

‣ Topology is encoded by their connectivity

“neighbours”



Adaptive mesh
‣ Inhomogeneous arrangement of points 

‣ optimized so that their local density and connectivity 
track some key physical property 

‣ the presence of many different length scales provides 
a hierarchy of  resolutions 

‣ grid may be static or dynamic; the latter sometimes 
offers big savings in storage and computational effort



Adaptive mesh
modelling of ocean currents with the grid 
resolution tied to the local vorticity field; 
recursive, squares-within-squares geometry

mesh of triangles whose area is 
inversely proportional to the speed of 
air flow around an aerofoil

materials modelling with 
small finite elements at 
points of high stress



Lattices
‣ Uniform mesh of infinite repeating units related to an 

underlying Bravais lattice 

‣ Exhibits definite space and point group symmetries 
(translation, rotation, reflection, ...) 

‣ How to connect boundary sites in a  
finite sample? 

‣ Can the symmetries be preserved?



Lattices
‣ Compatibility of boundary conditions with ordered states 

‣ Possibility of even/odd effects

AFM order with a  
line of mismatches

L = 2n+ 1

L = 2n



Coarse graining
‣ Process of spatial averaging over local regions 

‣ E.g., 3x3 averaging of binary cells gives distinct 10 levels 

‣ Recover continuous scalar field in large region limit



Coarse graining
‣ E.g., 3x3 averaging of 4-state clocks 

‣ Recover continuous vector field in large region limit



Hierarchy of length scales

L

�

l

l� � � L

sample 
size

phenomenological 
length scale

key requirement:



Spatial data structures

// square lattice as 2D array
int lattice[100][100];
lattice[60][99] = 0;

// square lattice as 1D array
int lattice[100*100];
inline int index(int i, int j)
{ return i+j*L; }
lattice[index(60,99)] = 0;

‣ Associate properties with each site (or link) of a lattice 

‣ Encode some sense of which sites are neighbours 

‣ For hypercubic lattices, the setup is trivial with C arrays:



Square lattice

[0][0] [L-1][0]

[0][L-1] [L-1][L-1]

matrix-style 
storage



Square lattice

[0] [L-1]

[(L-1)*L] [L*L-1]

[1] [2]

[L] [2L-1]

[2L] [3L-1]

row-major 
storage



Square lattice
index(i,j)

index((i+1)%L,j)index((L+i-1)%L,j)

index(i,(L+j-1)%L)

index(i,(j+1)%L)

index(i,j) index(i,j)

index(i,j)

A and B
sublattices
(L%2==0)



Square lattice class
#include <vector>
using std::vector;

template <typename T> 
class square_lattice
{
private:
   const int L; vector<T> data;
public:
   square_lattice(int L_) : L(L_), data(L*L) {}
   T& operator()(int i, int j) { return data[i+j*L]; }
   int length(void) { return L; }
};

struct cell { int speciesA, speciesB; };
square_lattice<cell> lattice(20);
for (int i = 0; i < lattice.length(); ++i)
   lattice(4,i).speciesA = 3;



Honeycomb lattice

inequivalent 
A and B sites

‣ Topology preserved when distorted to a brick-wall lattice

simple periodic 
boundary conditions



Triangular lattice
‣ Topology preserved when sheared to orthogonal axes

tripartite: A, B, and C sublattices
(Lx == Ly+1)

nontrivial wrap-
around



Kagomé lattice
‣ Further deplete the triangular lattice wasted storage


