Discretization

Phys 750 Lecture 2

Number representations

- The obvious strategies ...
- simple enumeration:
- labelling: e.g., Roman numerals
- For computation, we need a systematic number representation in which basic arithmetic operations are mechanistic
I II III IIII HH

1	1	10	χ
2	II	20	xx
3	III	30	XXX
4	IV	40	XL
5	V	50	L
6	VI	100	C
7	VII	500	D
8	VIII	1000	M
9	IX	1998	MCMXCVIII

Positional number systems

- positional notation

$$
\left(\cdots a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2} \cdots\right)_{b} \underbrace{}_{\text {radix point }} 0 \leq a_{k}<b
$$

- conventional number system

$$
\begin{aligned}
b & =10 \\
a_{k} & \in\{0,1,2, \ldots, 9\}
\end{aligned}
$$

Positional number systems

- base 2: 10010111_{2}
- base 8: 1735_{8}
- base 10: 0, 234, 1983
- base 16: 3F7A
- base 60: $23^{\circ} 44^{\prime} 12^{\prime \prime}$

Positional number systems

- base 2: $10010111_{2} \longleftarrow$ binary
- base 8: $1735_{8} \longleftarrow$ octal (octonal)
- base 10: 0, 234, $1983 \longleftarrow$ decimal
- base 16:3F7A \longleftarrow hexadecimal (sexadecimal)
- base 60: $23^{\circ} 44^{\prime} 12^{\prime \prime} \longleftarrow$ sexagesimal

Positional number systems

- base 2: 100101112
- base 8: 1735_{8}
- base 10: 0, 234, 1983
- base 16: 377A
- base 60: $23^{\circ} 44^{\prime} 12^{\prime \prime}$

Positional number systems

- base 2: 10010111_{2}
- base 8: 17358
- base 10: 0, 234, 1983
- base 16: 3F7A
- base 60: $23^{\circ} 44^{\prime} 12^{\prime \prime}$

$$
\begin{aligned}
& =2^{7}+2^{4}+2^{2}+2^{1}+2^{0} \\
& =128+32+4+2+1 \\
& =167
\end{aligned}
$$

Positional number systems

- base 2: 10010111_{2}
- base 8: 1735_{8}

$$
\begin{aligned}
& =1 \cdot 8^{3}+7 \cdot 8^{2}+3 \cdot 8^{1}+5 \cdot 8^{0} \\
& =512+7 \cdot 64+3 \cdot 8+5 \\
& =989
\end{aligned}
$$

- base 16: 3F7A
- base 60: $23^{\circ} 44^{\prime} 12^{\prime \prime}$

Positional number systems

- base 2: 10010111_{2}
- base 8: 1735_{8}
conventional hexadecimal digits
- base 10: 0, 234, 1983

$$
a_{k} \in\{0, \ldots, 9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}\}
$$

- base 16: 3F7A

$$
\begin{aligned}
& =3 \cdot 16^{3}+15 \cdot 16^{2}+7 \cdot 16^{1}+10 \cdot 16^{0} \\
& =3 \cdot 4096+15 \cdot 256+7 \cdot 16+10
\end{aligned}
$$

- base 60: $23^{\circ} 44^{\prime} 12^{\prime \prime}$

$$
=16250
$$

Binary systems

- Western system of musical notation

rests

Binary systems

2 gills	$=1$ chopin
2 chopins	$=1$ pint
2 pints	$=1$ quart
2 quarts	$=1$ pottle
2 pottles	$=1$ gallon
2 gallons	$=1$ peck
2 pecks	$=1$ demibushel
2 demibushels	$=1$ firkin
2 firkins	$=1$ kilderkin
2 kilderkins	$=1$ barrel
2 barrels	$=1$ hogshead
2 hogsheads	$=1$ pipe
2 pipes	$=1$ tun

Binary systems

- a modern digital computer stores information in a memory cell called a "bit"
- the four-transistor arrangement has two stable internal states,

memory transistors $\mathrm{Ml}, . ., \mathrm{M} 4$ access transistors M5,M6

Fixed-width binary

- An unsigned, 8-bit binary number can
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right) 0$. numbers $0-255$

0	0	0	0	0	0	I	I

- There are 2^{8} unique patterns of 0 and 1

Fixed-width binary

> conventional binary
> $\begin{aligned} & \text { two's } \\ & \text { mplement }\end{aligned}$

Potential dangers

- Fixed-width binary numbers can represent only a limited range of integers
- The result of an operation (such as addition or multiplication) performed on pairs of representable integers may not be representable itself!
- This condition is called "overflow"
- Wait, does this really matter? Yes, there many famous real-life examples (YouTube: ariane 5 explosion)

Why two's complement?

- Unique bit representation for zero
- Algebraic operations-in terms of the manipulation of the underlying bit representations-are identical for unsigned and two's complement numbers
- Single hardware implementation; only the interpretation changes with context

Why two's complement?

$$
\begin{gathered}
217+92==53 \\
\text { overflow }
\end{gathered}
$$

$$
-39+92==53
$$

correct

Why two's complement?

	1		1	1	1	I	1	
	1	0	1	1	0	1	0	1
$+$	0	0	1	1	1	0	1	1
	1	1	1	1	0	0	0	0

$$
\begin{gathered}
-75+59==-16 \\
\text { correct }
\end{gathered}
$$

$181+92==-16$ overflow

Why two's complement?

- Straightforward to detect overflow:
- If the sum of two positive numbers yields a negative result, the sum has overflowed
- If the sum of two negative numbers yields a positive result, the sum has overflowed
- In two's complement, carry out does not indicate an overflow condition

C++ integer types

- Only relative sizes guaranteed; on the Intel architecture . . .

0000001000010 char
8 bits, 1 byte (on all plafforms)
$\underbrace{0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 000}$ short int
2 bytes, 1 word
int, long int
$0000|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0 \mid 0$
4 bytes, I double word

C++ integer types

- Types of fixed width available in C++ \#include <stdint>

$$
\begin{array}{|l|l|l|l|l|l}
\hline 0 \mid 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \text { int8_t, uint8_t }
$$

8 bits, 1 byte
 16 bits, 2 bytes int32_t, uint_32

32 bits, 4 bytes

Arithmetic operators

$$
\begin{aligned}
& \text { unsigned char } a=3 ; \text { integer 0-255 } \\
& \text { a }-=5 ; / / \text { or: } a=a-5 ; \\
& \text { assert }(a==254) ;
\end{aligned}
$$

$$
\text { char } b=64 ; ~ i n t e g e r-128-127
$$

$$
\text { prefix } \underset{\text { assert }(b==-126) ; ~}{\text { b }}
$$

increment
truncation rather
than rounding

$$
\begin{aligned}
& \text { int } x=2 *(21+4) \text {; } \\
& \text { int } y=5+x++/ 17 \\
& \text { assert(x == 51); } \\
& \text { assert }(y==5+2) \text {; } \\
& \text { for (int } i=0 ; i<1000 ;++i) \\
& \text { if }(-5=0) \text { do_something(); }
\end{aligned}
$$

Discretization

- Computers cannot naturally handle continuous properties
- But the granularity of a simulation is not apparent on sufficiently long length scales

> "Physical Laws"
finite-element decomposition lattice regularization
coarse graining multi-scale analysis
discrete models

Spatial grids

- Replace continuous manifold by a mesh of points
- Topology is encoded by their connectivity

graph edge = "link"
or "bond"

Adaptive mesh

- Inhomogeneous arrangement of points
- optimized so that their local density and connectivity track some key physical property
- the presence of many different length scales provides a hierarchy of resolutions
- grid may be static or dynamic; the latter sometimes offers big savings in storage and computational effort

Adaptive mesh

modelling of ocean currents with the grid resolution tied to the local vorticity field; recursive, squares-within-squares geometry
mesh of triangles whose area is inversely proportional to the speed of air flow around an aerofoil

materials modelling with small finite elements at points of high stress

Lattices

- Uniform mesh of infinite repeating units related to an underlying Bravais lattice
- Exhibits definite space and point group symmetries (translation, rotation, reflection, ...)
- How to connect boundary sites in a finite sample?
- Can the symmetries be preserved?

Lattices

- Compatibility of boundary conditions with ordered states
- Possibility of even/odd effects

AFM order with a line of mismatches

Coarse graining

- Process of spatial averaging over local regions
- E.g., 3×3 averaging of binary cells gives distinct 10 levels
- Recover continuous scalar field in large region limit

Coarse graining

- E.g., 3×3 averaging of 4 -state clocks
- Recover continuous vector field in large region limit

Hierarchy of length scales

key requirement:

$$
l \ll \xi \ll L
$$

Spatial data structures

- Associate properties with each site (or link) of a lattice
- Encode some sense of which sites are neighbours
- For hypercubic lattices, the setup is trivial with C arrays:

```
// square lattice as 2D array
int lattice[100][100];
lattice[60][99] = 0;
// square lattice as 1D array
int lattice[100*100];
inline int index(int i, int j)
{ return i+j*L; }
lattice[index(60,99)] = 0;
```


Square lattice

Square lattice

Square lattice

Square lattice class

```
#include <vector>
using std::vector;
template <typename T>
class square_lattice
{
private:
    const int L; vector<T> data;
public:
    square_lattice(int L_) : L(L_), data(L*L) {}
    T& operator()(int i, int j) { return data[i+j*L]; }
    int length(void) { return L; }
};
struct cell { int speciesA, speciesB; };
square_lattice<cell> lattice(20);
for (int i = 0; i < lattice.length(); ++i)
    lattice(4,i).speciesA = 3;
```


Honeycomb lattice

- Topology preserved when distorted to a brick-wall lattice

boundary conditions

Triangular lattice

- Topology preserved when sheared to orthogonal axes

(Q) \longleftarrow nontrivial wrap-

tripartite:A, B, and C sublattices

$$
(L x==L y+1)
$$

Kagomé lattice

- Further deplete the triangular lattice

