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Electronic moments in solids
‣ In the core levels of real atoms (e.g., 

transition metals, rare earths, actinides) 

‣ Highly localized orbitals 

‣            -fold degenerate; combination of 
orbital and intrinsic angular momenta 

‣ Possible crystal field splitting into 
Kramer’s doublet
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Microscopic magnetism
‣ Consider effective             degrees of freedom  
 

‣ Long range dipole interactions only play a role on the 
macroscopic level (e.g., in domain formation) 

‣ This quantum object — a “spin” — interacts with other 
nearby spins via the exchange interaction
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Simplified view

two-state basis for  
S=1/2 spins            

tight-binding picture 
of orbital overlaps       



Virtual exchange processes
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‣ E.g., a spin-isotropic antiferromagnetic coupling:



Ising model
‣ If, in addition, the exchange coupling is highly spin-

anisotropic (e.g.,                 ) and short ranged then 
interaction depends only on the local alignment of 
adjacent spins  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Ising model thermodynamics
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‣ All thermodynamics follows from the partition function in 
the canonical ensemble:

free energy

internal energy

F = �kT lnZ

= E � TS entropy



Ising model thermodynamics
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‣ The specific heat and the magnetic susceptibility are 
related to fluctuations of the configurational energy and 
fluctuations of the total magnetization:

derivatives of 
primary quantities



Ising model thermodynamics

‣ In dimension           , the Ising model exhibits a 
continuous (or second order) phase transition between 
ferromagnetic and magnetically disordered phases 

‣ Recall the Ehrenfest classification: 

‣ 1st order: discontinuities in 

‣ 2nd order: continuous     , discontinuities in
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Famous exact results
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C.N. Yang, Phys. Rev. 85, 808 (1952)

L. Onsager, Phys. Rev. 65, 117 (1944)

‣ Critical temperature: 

‣ Magnetization:
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Critical behaviour
M ⇤ [4(

⌅
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Critical behaviour

T = 2
3Tc T = 3

2TcT = Tc

fractal clusters  
(cf. percolation)

thermally 
disordered

dominant 
cluster



Finite-size scaling
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‣ Simulations of increasing size approach the 
thermodynamic limit result
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Finite-size scaling
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‣ The magnetic correlation length diverges as  
 

‣ The system becomes “scale invariant” at the critical point  
 

‣  Implies that the free energy density has the form
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reduced 
temperature

“universal 
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Finite-size scaling
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‣ All thermodynamic quantities (which are derivatives of 
the free energy) inherit a scaling form 
 
 
 

‣ Also leads to relationships amongst the exponents:



Finite-size scaling
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0.61 if T = Tc

0 if T > Tc

‣ Helpful to construct scaling-free quantities from 
combinations of measurements 

‣ E.g., the moments 
                     and 

‣ The ratio                       is order zero in   

‣ Data collapse for the “Binder cumulant” versus x = tL1/�
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Metropolis updates
‣ How might we simulate this? 

‣ Impose a fictitious Monte Carlo dynamics based on single 
spin flips 

‣ Traversal of the phase space is ergodic but slow 

‣ Accept move with probability                                 ,  
where
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Metropolis updates
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Equilibration process
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Equilibration process
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Rapid quenching

large ferromagnetic 
domains left in tact 

by local updates



Cluster updates

� N1/2
clperimeter = 2boundary

‣ More efficient to flip clusters of spins 

‣ Swendson-Wang and Wolff 
algorithms eliminate the problem of 
critical slowing down



Wolff algorithm
‣ Focus on the set of links 

connecting sites that have 
the same spin



Wolff algorithm
‣ Focus on the set of links 

connecting sites that have 
the same spin 

‣ Choose a site at random 

‣ Grow cluster by activating 
set of adjacent links with 
probability 1� e�2J/T



Wolff algorithm
‣ Focus on the set of links 

connecting sites that have 
the same spin 

‣ Choose a site at random 

‣ Grow cluster by activating 
set of adjacent links with 
probability 

‣ Flip the entire cluster

1� e�2J/T


