Ising model

Phys 750 Lecture I8



Electronic moments in solids

Increasing
localization
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» |n the core levels of real atoms (e.q.,
transition metals, rare earths, actinides)

» Highly localized orbitals

» (2j+1)-fold degenerate; combination of
orbital and intrinsic angular momenta

» Possible crystal field splitting into
Kramer's doublef 2~ 1
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Microscopic magnetism

» Consider effective SU(2 )degrees of freedom Puul matrices

» Long range dipole interactions onIy play a role on the
macroscopic level (e.g., in domain formation)

» This quantum object — a “spin” — inferacts with other
nearby spins via the exchange interaction
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Simplified view

tight-binding picture
of orbital overlaps
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two-state basis for
S=1/2 spins
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Virtual exchange processes

» E.g., a spin-isotropic antiferromagnetic coupling:
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Ising model

» It in addition, the exchange coupling is highly spin-
anisotropic (e.g., 7! > 7+ ) and short ranged then
interaction depends only on the local alignment of
udiuceni spins
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Ising model thermodynamics

» All thermodynamics follows from the partition function in
the canonical ensemble:
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Ising model thermodynamics

» The specific heat and the magnetic suscepfibility are
related to fluctuations of the configurational energy and
fluctuations of the total magnetization:
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Ising model thermodynamics

» In dimension > 1, the Ising model exhibits a
continuous (or second order) phase fransition between
ferromagnetic and magnetically disordered phases

» Recall the Ehrenfest classification:
» 1st order: discontinuities in

» Ind order: confinuous F” discontinuities in 7"

M ~ 0F/9H dies away continuously with heating



Famous exact results

» Critical temperature: «7. =

» Magnetization: M =

2

log(1 + v/2)

L. Onsager, Phys. Rev. 65, 117 (1944)
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C.N. Yang, Phys. Rev. 85, 808 (1952)
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Critical behaviour
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a set of critical exponents



Critical behaviour

T = 2T T =T, T = 3T
dominant fractal clusters thermally

cluster (cf. percolation) disordered



Finite-size scaling

» Simulations of increasing size approach the
thermodynamic limit result
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Finite-size scaling

» The magnetic correlation length diverges as 7 — 7.

correlation length <T 5 — reduced
T) =t (¢ = - )<
exponent w T temperature

» The system becomes “scale invariant” at the critical point

T, fo 1/v T 1/v
(EL—O> :t(L—())

» Implies that the free energy density has the form .

f(LT ——L &tLl/V/

universal
function”



Finite-size scaling

» All thermodynamic quantities (which are derivatives of
the free energy) inherit a scaling form
M(L,T) =M(@tLY")L=P/V
X(L, T) = X(tL")LV/"
(

L,T) =
C(L,T) = C(tLY")L*/¥

» Also leads to relationships amongst the exponents:
o+ 2047 =2 v=06(00-1)
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Finite-size scaling

» Helpful to construct scaling-free quantities from
combinations of measurements

» E.q., the moments (m?) ~ (LIL~P/v)?
and (m*) ~ (LIL-P/v)4

» The ratio (m*) /(m?)? is order zero in L

» Data collapse for the “Binder cumulant” versus = = ¢+£1/~

- 2/3 i T < T,
U=1-3 3 = ULYY) U—-{061 ifT=T.
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Metropolis updates

» How might we simulate this?

» Impose a fictitious Monte Carlo dynamics based on single
spin flips s; — s, = —s;

» Traversal of the phase space is ergodic but slow

» Accept move with probability P = min(1, e #2%),
where

AH=H[..,s;...]—H[..,8,...]



Metropolis updates
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» General rule: AH = —25, x Y s,
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Equilibration process

starting from a
perfecily
ferromagnetic
configuration

1T =21,

relaxing to
disorder
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Equilibration process

starting from a ———————
perfecily | / L-w —
disordered L0

configuration 06 L=

T = %Tc 0.4}

relaxing fo N
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Rapid quenching

large ferromagnetic
domains left in tact
by local updates
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Cluster updates

VIV
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Vgt t[4¥] » Swendson-Wang and Wolf
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Wolft algorithm

» Focus on the set of links
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» Focus on the set of links
connecting sites that have
the same spin

» Choose a site at random

» Grow cluster by activating
set of adjacent links with
probability 1 — e=27/7

Wolft algorithm
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» Focus on the set of links
connecting sites that have
the same spin

» Choose a site at random

» Grow cluster by activating
set of adjacent links with
probability 1 — e=27/7

» Flip the entire cluster

Wolft algorithm
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