lsing model

Phys 750 Lecture I 8

Electronic moments in solids

- In the core levels of real atoms (e.g., transition metals, rare earths, actinides)
- Highly localized orbitals
- $(2 j+1)$-fold degenerate; combination of orbital and intrinsic angular momenta
- Possible crystal field splititing into Kramer's doublet

Microscopic magnetism

- Consider effective $\mathrm{SU}(2)$ degrees of freedom

$$
\mathbf{S}=\left(S^{x}, S^{y}, S^{z}\right)=\frac{\hbar}{2} \sigma^{x}\left(\sigma^{y}\left(\sigma^{z}\right)\right.
$$

- Long range dipole interactions only play a role on the macroscopic level (e.g., in domain formation)
- This quantum object - a "spin" - interacts with other nearby spins via the exchange interaction

$$
S_{i}^{a} I_{i j}^{a b} S_{j}^{b}=\frac{1}{2} I^{\perp}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+I^{\|} S_{i}^{z} S_{j}^{z}
$$

Simplified view

Virtual exchange processes

- E.g., a spin-isotropic antiferromagnetic coupling:

Ising model

- If, in addition, the exchange coupling is highly spinanisotropic (e.g., $I^{\|} \gg I^{\perp}$) and short ranged then interaction depends only on the local alignment of adjacent spins
sum once over $\begin{aligned} & \mathcal{H}[s]= \\ & \text { all nn bonds } \\ & \text {, Change of notation }\end{aligned}$.
allow for an

$$
I^{\|}=-\frac{4 J}{\hbar^{2}}, \quad \sigma^{z}=\left(\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right) \longrightarrow s_{i} \in\{-1,+1\}
$$

Ising model thermodynamics

- All thermodynamics follows from the partition function in the canonical ensemble:

$$
\begin{aligned}
Z=\sum_{\left\{s_{i}\right\}} e^{-\beta \mathcal{H}[s]} \longrightarrow E & =\frac{\sum \mathcal{H} e^{-\beta \mathcal{H}}}{\sum e^{-\beta \mathcal{H}}} \text { internal energy } \\
& =-\frac{\partial Z / \partial \beta}{Z}=-\frac{\partial \ln Z}{\partial \beta}=\frac{\partial(\beta F)}{\partial \beta} \\
& \quad \begin{aligned}
& \downarrow \text { ree energy } \\
& F=-k T \ln Z \\
&=E-T S \longrightarrow
\end{aligned} \\
& =-T^{2} \frac{\partial(F / T)}{T}=F-T \frac{\partial F}{\partial T}
\end{aligned}
$$

Ising model thermodynamics

- The specific heat and the magnetic susceptibility are related to fluctuations of the configurational energy and fluctuations of the total magnetization:

$$
\begin{aligned}
C & =\frac{\partial E}{\partial T}=\frac{\partial E}{\partial \beta} \frac{\partial \beta}{\partial T} \quad \chi=\left(\frac{\partial M}{\partial H}\right)=\frac{\left\langle M^{2}\right\rangle-\langle M\rangle^{2}}{k T} \\
& =\frac{\left\langle\mathcal{H}^{2} \lambda-\langle\mathcal{H}\rangle^{2}\right.}{k T \sum_{i}^{2}}
\end{aligned} \quad M=\sum_{i} s_{i}=\frac{1}{\beta} \frac{\partial \ln Z}{\partial H}
$$

Ising model thermodynamics

- In dimension $d>1$, the Ising model exhibits a continuous (or second order) phase transition between ferromagnetic and magnetically disordered phases
- Recall the Ehrenfest classification:
- lst order: discontinuities in F^{\prime}
- 2nd order: continuous F^{\prime}, discontinuities in $F^{\prime \prime}$
$M \sim \partial F / \partial H$ dies away continuously with heating

Famous exact results

- Critical temperature: $k T_{\mathrm{c}}=\frac{2}{\log (1+\sqrt{2})}$
L. Onsager, Phys. Rev. 65, 117 (1944)
- Magnetization: $M=\left[\frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}\left(1-6 x^{2}+x^{4}\right)^{1 / 2}\right]^{1 / 4}$

$$
x=e^{-2 / k T}
$$

C.N. Yang, Phys. Rev. 85, 808 (1952)

Critical behaviour

Critical behaviour

$T=\frac{2}{3} T_{\mathrm{c}}$
dominant cluster

$$
T=T_{\mathrm{c}}
$$

fractal clusters
(c. percolation)

$T=\frac{3}{2} T_{\mathrm{c}}$
thermally disordered

Finite-size scaling

- Simulations of increasing size approach the thermodynamic limit result

Finite-size scaling

- The magnetic correlation length diverges as $T \rightarrow T_{\mathrm{c}}^{+}$ correlation length exponent

$$
\xi(T)=\xi_{0} \overbrace{}^{\bullet} \quad t=\frac{T-T_{\mathrm{c}}}{T_{\mathrm{c}}} \longleftarrow \text { reduced }
$$

- The system becomes "scale invariant" at the critical point

$$
\left(\frac{L}{\xi} \frac{\xi_{0}}{L_{0}}\right)^{1 / \nu}=t\left(\frac{L}{L_{0}}\right)^{1 / \nu}
$$

- Implies that the free energy density has the form

$$
f(L, T)=\frac{F}{L^{d}}=L^{-} \underbrace{\mathbb{Y}} C_{1} t L^{1 / \nu}) \quad \text { function" }
$$

Finite-size scaling

- All thermodynamic quantities (which are derivatives of the free energy) inherit a scaling form

$$
\begin{aligned}
M(L, T) & =\mathbb{M}\left(t L^{1 / \nu}\right) L^{-\beta / \nu} \\
\chi(L, T) & =\mathbb{X}\left(t L^{1 / \nu}\right) L^{\gamma / \nu} \\
C(L, T) & =\mathbb{C}\left(t L^{1 / \nu}\right) L^{\alpha / \nu}
\end{aligned}
$$

- Also leads to relationships amongst the exponents:

$$
\begin{aligned}
\alpha+2 \beta+\gamma=2 & \gamma=\beta(\delta-1) \\
d=2-\alpha & \gamma=\nu(2-\eta)
\end{aligned}
$$

Finite-size scaling

- Helpful to construct scaling-free quantities from combinations of measurements
- E.g., the moments $\left\langle m^{2}\right\rangle \sim\left(L^{d} L^{-\beta / \nu}\right)^{2}$

$$
\text { and }\left\langle m^{4}\right\rangle \sim\left(L^{d} L^{-\beta / \nu}\right)^{4}
$$

- The ratio $\left\langle m^{4}\right\rangle /\left\langle m^{2}\right\rangle^{2}$ is order zero in L
- Data collapse for the "Binder cumulant" versus $x=t L^{1 / \nu}$

$$
U=1-\frac{\left\langle m^{4}\right\rangle}{3\left\langle m^{2}\right\rangle^{2}}=\mathbb{U}\left(t L^{1 / \nu}\right) \quad U \rightarrow \begin{cases}2 / 3 & \text { if } T<T_{\mathrm{c}} \\ 0.61 & \text { if } T=T_{\mathrm{c}} \\ 0 & \text { if } T>T_{\mathrm{c}}\end{cases}
$$

Metropolis updates

- How might we simulate this?
- Impose a fictitious Monte Carlo dynamics based on single spin flips $s_{i} \mapsto s_{i}^{\prime} \equiv-s_{i}$
- Traversal of the phase space is ergodic but slow
- Accept move with probability $P=\min \left(1, e^{-\beta \Delta \mathcal{H}}\right)$, where

$$
\Delta \mathcal{H}=\mathcal{H}\left[\ldots, s_{i}^{\prime}, \ldots\right]-\mathcal{H}\left[\ldots, s_{i}, \ldots\right]
$$

Metropolis updates

$$
\begin{aligned}
& \Delta \mathcal{H}=4 J-(-4 J)=8 J \\
& P=e^{-8 J / T}
\end{aligned}
$$

$\Delta \mathcal{H}=6 J$
$P=e^{-6 J / T}$

- General rule: $\Delta \mathcal{H}=-2 s_{i} \times \sum_{j \in \operatorname{mn}(i)} s_{j}$

Equilibration process

starting from a perfectly ferromagnetic configuration
$T=2 T_{\mathrm{c}}$
relaxing to disorder

Equilibration process

starting from a perfectly disordered configuration

$$
T=\frac{1}{2} T_{\mathrm{c}}
$$

relaxing to magnetism

Rapid quenching

- large ferromagnetic domains left in tact by local updates

Cluster updates

perimeter $\sim N_{\mathrm{cl}}^{1 / 2}$

- More efficient to flip clusters of spins
- Swendson-Wang and Wolff algorithms eliminate the problem of critical slowing down

boundary $=2$

Wolff algorithm

- Focus on the set of links connecting sites that have the same spin

| \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \downarrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \downarrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow |

Wolff algorithm

- Focus on the set of links connecting sites that have the same spin
- Choose a site at random
- Grow cluster by activating set of adjacent links with probability $1-e^{-2 J / T}$

| \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \downarrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow |
| \downarrow | \uparrow | \uparrow | \uparrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow |
| \downarrow | \downarrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow |

Wolff algorithm

- Focus on the set of links connecting sites that have the same spin
- Choose a site at random
- Grow cluster by activating set of adjacent links with probability $1-e^{-2 J / T}$

| \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow | \uparrow | \uparrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| \downarrow |
| \downarrow |
\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow
\downarrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow
\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\downarrow								
							\downarrow	\downarrow

- Flip the entire cluster

