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Random walks
‣ Deterministic system: given initial conditions, the future 

is completely determined 

‣ Stochastic system: random transitions between states or 
random movements along the degrees of freedom 

‣ Stochastic picture is appropriate if we cannot track the 
individual motion of all particles: e.g., a complicated 
system interacting with a thermal reservoir



Random walks
‣ One of the simplest examples is the random walk 

‣ Imagine a particle taking     uncorrelated and randomly 
determined steps 

‣ The total displacement is 

‣ The total square distance is 
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Random walks
‣ Root mean square behaviour characteristic of diffusion: 

‣ Robust with respect to 

‣ spatial dimension, details of the lattice/continuum 

‣  most step modifications: e.g., variable step size  
                     with                    ; or with    drawn from 
a nonuniform distribution 
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Random walks
‣ Fourth moment of the standard random walk: 

‣ Average over many walks gives 

‣ Variance of the variance grows linearly with walk length
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Random walks
‣ Separation of two typical walkers grows with  
‣ No single walk behaves like the average walk 
‣ Central limit theorem: 
‣ a large number of independent random variables with 

finite mean and variance will be normally distributed
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Self-avoiding walks
‣ In the conventional random walk, each step is statistically 

independent 

‣ But interactions and other physical constraints may 
require models that depend on the path history 

‣ E.g., a polymer is a large molecule of chained structural 
units (monomers); monomers cannot occupy the same 
region of space



Self-avoiding walks
‣ Self-avoidance (the “excluded volume constraint”) is 

equivalent to an infinitely strong short-ranged repulsion 

‣ Hence SAWs travel farther afield than convention walks 

‣ Modified power law:                       with  

‣                  in 2D 

‣                   in 3D
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Self-avoiding walks
‣ Self-avoiding walks are difficult to generate: algorithms 

that grow walks randomly, step by step (                      ) 
suffer from either high attrition or bias
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‣ If we choose from all of the                       
non-backtracking steps, there is a 
good chance of self-intersection 

‣ If we choose from only the             
viable steps, then the walk is giving 
preference to some configurations
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Self-avoiding walks
‣ Bias can be eliminated by re-weighting each walk 

according to  

‣ Measurement of the properties of the    –step walk then 
corresponds to the weighted average 

‣ The problem of attrition through self-trapping remains
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Enumeration of SAWs
‣ An alternative is to exhaustively catalogue all possible 

configurations 

‣ Systematic construction of the SAW tree using depth-first 
or breadth-first search algorithms



Enumeration of SAWs
‣ When all configurations are known, the weights are 

trivial and measurements correspond to simple averages: 

‣ The denominator reverts to       , the number of possible 
walks at level  N
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Enumeration of SAWs

1w + 5w + 5w + 5w + 9w + 5w + 5w + 5w + 1w
w + w + w + w + w + w + w + w + w

‣ Example: measuring               for the 3-step walk 

‣ Equal weights (           ) lead to an average

O = r2



Interacting SAWs
‣ How do we handle interactions? 

‣ What if the walks aren’t purely 
random, but instead are influenced by 
nearest neighbour forces (e.g., van 
der Waals between monomers)? 

‣ Easiest to treat this in the canonical 
ensemble (assuming a heat bath fixed 
at temperature    )  T
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Interacting SAWs
‣ Introduce Boltzmann weights:

‣ Example: 4-step walk with 
configurational energy given 
by the number of monomers 
that are neighbours without 
being adjacent in the chain

Ek = �nkV
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Interacting SAWs
‣ Group by contribution in x = �V



Interacting SAWs
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Interacting SAWs
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Interacting SAWs
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