Random walks
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Random walks

» Deterministic system: given initial conditions, the future
is completely determined

» Stochastic system: random transitions between states or
random movements along the degrees of freedom

» Stochastic picture is appropriate it we cannot track the
individual motion of all particles: e.g., a complicated
system interacting with a thermal reservoir



Random walks

» One of the simplest examples is the random walk

» Imagine a particle taking v uncorrelated and randomly
defermined steps s; = +1

N
> The tofal displacement is = = s,
1=1

» The total square distance is
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Random walks

» One of the simplest examples is the random walk

» Imagine a particle taking v uncorrelated and randomly
defermined steps s; = +1

N
> The tofal displacement is = = s,
1=1
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» The total square distance is average
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Random walks

» Root mean squure behaviour churucterisiic of diffusion:
= 2Dt, \/(x?)
» Robust with respect to
» spatial dimension, details of the lattice/confinuum

» most step modifications: e.g., variable step size
r — o+ £ with € € [—1,1]; or with & drawn from
a nonuniform distribution



Random walks

» Fourth moment of the standard random walk:
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» Average over many walks gives
(z%) =N +3N(N —1)=3N? - 2N
» Variance of the variance grows linearly with walk length

V(ak) = (@3)2 ~ VAN




Random walks

» Separation of two typical walkers grows with v
» No single walk behaves like the average walk
» Central limit theorem:

» o large number of independent random variables with
finite mean and variance will be normally distributed
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Selt-avoiding walks

» |n the conventional random walk, each step is stafistically
independent

» But interactions and other physical constraints may
require models that depend on the path history

» E.g., a polymer is a large molecule of chained structural
units (monomers): monomers cannot occupy the same

region of space 1




Selt-avoiding walks

» Self-avoidance (the “excluded volume constraint”) is
equivalent to an infinitely strong short-ranged repulsion

» Hence SAWs travel farther afield than convention walks

» Modified power law: v/r2 ~ At” with v > 1/2

» v =3/4in2D « dimensional

= 0.50 in 3D < — dependence is
a new feature




Selt-avoiding walks

» Self-avoiding walks are difficult to generate: algorithms
that grow walks randomly, step by step (zn — 2n 1)
suffer from either high attrition or bias

» If we choose from all of the o = 3
non-backtracking steps, there is a discarded
good chance of self-intersection

» It we choose from only the o < 3
viable steps, then the walk is giving
preference to some configurafions viable steps



Selt-avoiding walks
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Selt-avoiding walks

» Bias can be eliminated by re-weighting each walk

according to ! — large fluctuations in
wWpN — H — « . .
1o magnitude (fp issue)
» Measurement of the properties of the N-step walk then
corresponds to the weighted average
(k), (k)
(On) = > On (ZU)N
Dk Wy

» The problem of attrition through self-trapping remains



Enumeration of SAWs

» An alternative is to exhaustively catalogue all possible
configurations

» Systematic construction of the SAW tree using depth-first
or breadth-first search algorithms




Enumeration of SAWs

» When all configurations are known, the weights are
trivial and measurements correspond to simple averages:
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» The denominator reverts to %, the number of possible
walks at level v



Enumeration of SAWs

» Example: measuring O = 2 for the 3-step walk

3 eg % 8 8 T 8w s

1w+ 5w+ 5w+ 5w+ 9w+ dw + dw+ dw + 1w

wt+wvwt+w+wt+twt+w+w+w+w
» Equal weights (w = 1) lead fo an average

0+5x64+2x1 41
(r%_g) = 2 5 T = = 4.56




Interacting SAWs

» How do we handle interactions?

» What if the walks aren't purely
random, but instead are influenced by
nearest neighbour forces (e.g., van
der Waals between monomers)?

» Easiest to treat this in the canonical
ensemble (assuming a heat bath fixed
at temperature 7)



Interacting SAWs

» Introduce Boltzmann weights:

» Example: 4-step walk with
configurational energy given
by the number of monomers
that are neighbours without
being adjacent in the chain

Ek — —nkV



Interacting SAWs

» Group by contribution in z = 3V
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Interacting SAWs
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Interacting SAWs




Interacting SAWs
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