Random walks

Phys 750 Lecture 17

Random walks

- Deterministic system: given initial conditions, the future is completely determined
- Stochastic system: random transitions between states or random movements along the degrees of freedom
- Stochastic picture is appropriate if we cannot track the individual motion of all particles: e.g., a complicated system interacting with a thermal reservoir

Random walks

- One of the simplest examples is the random walk
- Imagine a particle taking N uncorrelated and randomly determined steps $s_{i}= \pm 1$
- The total displacement is $x_{N}=\sum_{i=1}^{N} s_{i}$
- The total square distance is

$$
x_{N}^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} s_{i} s_{j}=N+\sum_{i \neq j} s_{i} s_{j}
$$

Random walks

- One of the simplest examples is the random walk
- Imagine a particle taking N uncorrelated and randomly determined steps $s_{i}= \pm 1$
- The total displacement is $x_{N}=\sum_{i=1}^{N} s_{i}$
- The total square distance is

many walks

Random walks

- Root mean square behaviour characteristic of diffusion:

$$
\left\langle x^{2}\right\rangle=2 D t, \quad \sqrt{\left\langle x^{2}\right\rangle} \sim \sqrt{t}
$$

- Robust with respect to
- spatial dimension, details of the lattice/continuum
- most step modifications: e.g., variable step size
$x \rightarrow x+\xi$ with $\xi \in[-1,1]$; or with ξ drawn from a nonuniform distribution

Random walks

- Fourth moment of the standard random walk:

$$
x_{N}^{4}=\sum_{i=1}^{N} s_{i}^{4}+3 \sum_{i=1}^{N}\left[s_{i}^{2} \sum_{j \neq i} s_{j}^{2}\right]
$$

- Average over many walks gives

$$
\left\langle x_{N}^{4}\right\rangle=N+3 N(N-1)=3 N^{2}-2 N
$$

- Variance of the variance grows linearly with walk length

$$
\sqrt{\left\langle x_{N}^{4}\right\rangle-\left\langle x_{N}^{2}\right\rangle^{2}} \sim \sqrt{2} N
$$

Random walks

- Separation of two typical walkers grows with N
- No single walk behaves like the average walk
- Central limit theorem:
- a large number of independent random variables with finite mean and variance will be normally distributed

$$
x_{N}^{(1)}=s_{1}^{(1)}+s_{2}^{(1)}+\cdots+s_{N}^{(1)}
$$

$$
\left(x_{N}^{(1)}, x_{N}^{(2)}, \ldots x_{N}^{(k)}\right) \leftarrow e^{-x^{2} / 2 \sigma^{2}}
$$

$x_{N}^{(k)}=s_{1}^{(k)}+s_{2}^{(k)}+\cdots+s_{N}^{(k)}$
$\sigma^{2} \sim N$

Self-avoiding walks

- In the conventional random walk, each step is statistically independent
- But interactions and other physical constraints may require models that depend on the path history
- E.g., a polymer is a large molecule of chained structural units (monomers); monomers cannot occupy the same region of space

Self-avoiding walks

- Self-avoidance (the "excluded volume constraint") is equivalent to an infinitely strong short-ranged repulsion
- Hence SAWs travel farther afield than convention walks
- Modified power law: $\sqrt{r^{2}} \sim A t^{\nu}$ with $\nu>1 / 2$
- $\nu=3 / 4$ in 2D \longleftarrow dimensional
, $\nu \doteq 0.59$ in $3 \mathrm{D} \longleftarrow$ dependence is
a new feature

Self-avoiding walks

- Self-avoiding walks are difficult to generate: algorithms that grow walks randomly, step by step $\left(x_{N} \rightarrow x_{N+1}\right)$ suffer from either high attrition or bias
- If we choose from all of the $\sigma=3$ non-backtracking steps, there is a good chance of self-intersection

- If we choose from only the $\sigma \leq 3$ viable steps, then the walk is giving preference to some configurations

Self-avoiding walks

Self-avoiding walks

- Bias can be eliminated by re-weighting each walk according to

$$
w_{N}=\prod_{i=1}^{N} \frac{1}{\sigma_{i}} \Longleftarrow \quad \begin{aligned}
& \text { large fluctuations in } \\
& \text { magnitude (fp issue) }
\end{aligned}
$$

- Measurement of the properties of the N-step walk then corresponds to the weighted average

$$
\begin{aligned}
& \left\langle O_{N}\right\rangle=\frac{\sum_{k} O_{N}^{(k)} w_{N}^{(k)}}{\sum_{k} w_{N}^{(k)}} \\
& \text { of attrition through self-trapping remains }
\end{aligned}
$$

Enumeration of SAWs

- An alternative is to exhaustively catalogue all possible configurations
- Systematic construction of the SAW tree using depth-first or breadth-first search algorithms

Enumeration of SAWs

- When all configurations are known, the weights are trivial and measurements correspond to simple averages:

$$
\left\langle O_{N}\right\rangle=\frac{\sum_{k} O_{N}^{(k)} w_{N}^{(k)}}{\sum_{k} w_{N}^{(k)}} \stackrel{w=1}{\longrightarrow} \frac{1}{K_{N}} \sum_{k=1}^{K_{N}} O_{N}^{(k)}
$$

- The denominator reverts to K_{N}, the number of possible walks at level N

Enumeration of SAWs

- Example: measuring $O=r^{2}$ for the 3 -step walk

- Equal weights ($w=1$) lead to an average

$$
\left\langle r_{N=3}^{2}\right\rangle=\frac{9+5 \times 6+2 \times 1}{9}=\frac{41}{9} \doteq 4.56
$$

Interacting SAWs

- How do we handle interactions?
- What if the walks aren't purely random, but instead are influenced by nearest neighbour forces (e.g., van der Waals between monomers)?
- Easiest to treat this in the canonical ensemble (assuming a heat bath fixed at temperature T)

Interacting SAWs

- Introduce Boltzmann weights:

$$
\langle O\rangle=\frac{\sum_{k} O_{k} w_{k}}{\sum_{k} w_{k}} \xrightarrow{w_{k}=e^{-\beta E_{k}}} \frac{1}{Z} \sum_{k} O_{k} e^{-\beta E_{k}}
$$

- Example: 4-step walk with configurational energy given by the number of monomers that are neighbours without being adjacent in the chain

$$
E_{k}=-n_{k} V
$$

Interacting SAWs

- Group by contribution in $x=\beta V$

$$
\begin{aligned}
& \left\langle r_{N=4}^{2}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sog}_{8} g^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text {-0, } \\
& \begin{array}{l}
88 \\
8.88 \\
8.8
\end{array} \\
& \xi^{\circ} \% \\
& \% 8 \\
& 4 \times 4 e^{x}+2 \times 4 e^{x}+16 \times 1+10 \times 8+8 \times 6+4 \times 2 \\
& 3 e^{x}+5 e^{x}+1+8+6+2
\end{aligned}
$$

Interacting SAWs

$$
\left\langle r_{N=4}^{2}\right\rangle=\frac{24 e^{x}+152}{8 e^{x}+17} \rightarrow \begin{cases}\frac{24}{8}=3 & \text { if } x \rightarrow \infty \\ \frac{176}{25} \doteq 7.04 & \text { if } x \rightarrow 0 \\ \frac{152}{17} \doteq 8.94 & \text { if } x \rightarrow-\infty\end{cases}
$$

Interacting SAWs

Interacting SAWs

