
Random processes and 
probability distributions

Phys 750 Lecture 16



Random processes
‣ Many physical processes are random in character: e.g., 

‣ nuclear decay (Poisson distributed event count)  
 

‣ motion of “thermalized” interacting particles 
(Maxwell-Boltzmann speed profile)
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Random processes
‣ Probabilistic descriptions often arise from the complex 

behaviour of many interacting degrees of freedom 

‣ E.g., Temperature is an emergent phenomenon: 

‣ it’s a collective property of a large number of 
interacting particles 

‣ particles exchange energy and establish a MB 
distribution, characterized by a single parameter T
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‣ For a large collection of non-
interacting oscillators, the phase 
space trajectory of each individual 
oscillator is a closed circle 

‣ As we turn on interactions, the 
trajectories are perturbed 

‣ The trajectory density averaged over 
all oscillators can be understood as a 
probability density 



Ergodicity

non-ergodic ergodic

‣ Consider an idealized billiards system. . .



Statistical physics
‣ Ergodicity is the basis for statistical physics 

‣ We assume that all states in the phase space are 
accessible and have equal weight 

‣ In a system at fixed temperature, states are visited 
according to the Boltzmann factor: 

‣ Stochastic process with transition probabilities given by

Z =
�

n

e�En/kT

Pn⇥m � e�(En�Em)/kT



Some subtleties
‣ Can we prove ergodicity?  Rarely 

‣ What if the dynamics are ergodic but the timescale for 
traversing the phase space is slow?  Glassiness 

‣ What if the dynamics are ergodic within distinct regions of 
the phase space that are only tenuously connected?  Rare 
tunnelling events 

‣ How do we model such processes on a digital state 
machine that is purely deterministic?  Pseudo-randomness



Random numbers

‣ Misleading terminology 

‣ Is 23 a random number? 

‣ In what sense could it be random?



Random numbers
‣ What is a random number? 

‣ Really no such thing 

‣ Loose term of art referring to a sequence of 
independent numbers drawn randomly from some 
distribution 

‣ Typically these are integer or real values uniformly 
distributed in some finite range



Random numbers

‣ An infinite sequence of digits: 

‣ Is it random? (Humans are terrible at judging) 

‣ Each of the digits          occurs       of the time 

‣ Each pair of two successive digits occurs        of the time

1
100 – 9

1
100

99181956211585263425870769311327827177953470784192 · · ·



Random numbers

‣ Consider the first one million digits of the sequence: 

‣ digit counts are distributed around the average  

‣ every pattern is equally probable 

‣ digits are completely uncorrelated

given                         ,000000 · · · 0x P (x = 0) = 1
10

P (000000 · · · ) = P (193273 · · · )



Random numbers
‣ How do we generate sequences of random numbers? 

‣ Strictly speaking, this isn’t possible on a deterministic 
computer using finite arithmetic 

‣ Nonetheless, it may be possible to construct long 
sequences with the appearance of randomness 

‣ Probably okay if the relationship between numbers has 
no physical significance



Linear congruential generator
‣ Want a random sequence of real numbers 

‣ Popular strategy:  

‣ use fractions                        built from the sequence of 
integers 

‣ linear congruence scheme (Lehmer 1948)

Un = Xn/m

(Xn) ⇥ {0, 1, 2, . . . ,m� 1}

(Un) � [0, 1)

Xn+1 = (aXn + c) mod m

multiplier increment
modulus



Linear congruential generator
‣ Recursion builds off an initial “seed” value,  
 
 
 

‣ Requires careful choice of parameters:  

X0

X1 = (aX0 + c) mod m

X2 = (a[(aX0 + c) mod m] + c) mod m

...

X0

X0 = a = c = 7
m = 10(Xn) = 7, 6, 9, 0, 7, 6, 9, 0, . . .

very non-random, period 4



Linear congruential generator
‣ Any generator of the form                              taking     

distinct values must be periodic with period  

‣ For a linear congruential generator, one can show that 
the period is maximum if

• c is relatively prime to m;

• b = a� 1 is a multiple of p, for very prime p dividing m

• b is a multiple of 4, if m is a multiple of 4.

Xn+1 = F (Xn) m

P � m



Linear congruential generator
‣ For the sake of efficiency, specialize to the case 

‣ Advantages: 

‣ each integer fits into exactly one computer word 

‣ the modulus (an expensive division operation) is 
automatically handled in hardware by overflow 

‣ A specialized version of the maximum period rule:
c = 1

a � 5 mod 8

m = 232



Linear congruential generator
‣ A long repeating cycle does not imply randomness:  
 

‣ We require weak correlation between elements, 
 
 
especially when              is small 

‣  Judged empirically via statistical tests (Die Hard)

(Xn) = 0, 1, 2, . . . ,m� 1 (a = c = 1)

|j � k|

⇤XjXk⌅ � ⇤Xj⌅⇤Xk⌅ (j ⇥= k),



Linear congruential generator
‣ Some other considerations: 

‣ best if           is not too small 

‣ least significant bits are more 
highly correlated 

‣  complete orbits lie in 
hyperplanes (Marsaglia 1968):

(X0, X1, . . . , Xq�1), (Xq, Xq+1, . . . , X2q�1), . . .

a/m

a = 10, c = 23, m = 566

X2n

X2n+1



Probability distributions
‣ Suppose  there are      discrete events occur with 

probabilities 

‣ Since something must happen, the total sum is 

‣ Given a randomly generated number                 , how can 
we select one of the      events?

p1, p2, . . . , pN

N

p1 + p2 + · · · + pN = 1

� � [0, 1]
N



Probability distributions
‣ Each even   occupies a width     in the interval: 

1⇥ 0 < � < p1

2⇥ p1 < � < p1 + p2

3⇥ p1 + p2 < � < p1 + p2 + p3

...
N ⇥ p1 + · · · + pN�1 < � < 1

i pi

0 1p1 p2 pN· · ·



Probability distributions
‣ The relevant quantity is the cumulative probability, 

‣ Similarly, for continuous distributions, we construct a 
cumulative probability distribution 
 
 
from the probability density

P (x) =
� x

�⇥
dy p(y)

p(x)

Pi =
iX

j=1

pj



Probability distributions
‣ Sampling via 

x
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Inverse transform method

‣ Example: 

‣ Back map gives 

‣ By inversion, we see that                                 with     
drawn uniformly from          is equivalent to     drawn 
from the nonuniform distribution   

p(x) =

�
(1/�)e�x/� if 0 � x <⇥
0 if x < 0

� ⇥ P (x) =
� x

0
dy p(y) = 1� e�x/�

�

[0, 1] x

p(x)

x⇥ �� ln(1� ⇥)



Inverse transform method
‣ What about cases where no analytic inverse exists? 

‣ In some cases, related multivariate distributions are 
invertible: e.g. Gaussian distribution  
 

‣ Consider the product

p(x) =
e�x2/2�2

�
2�⇥2

p(x, y) = p(x)p(y) =
e�(x2+y2)/2�2

2�⇥2



Inverse transform method
‣ From radial coordinates  
 
 
we can further transform                   so that  
 

‣ Sampling is now possible with two random variables:

r =
�

x2 + y2

� = tan�1(y/x)

� = r2/2

p(⇤, �)d⇤ d� =
1
2⇥

e��d⇤ d�

x⇥
�
�2 ln(1� �1) cos(2⇥�2)

y =
�

2⇥ sin �

x =
�

2⇥ cos �

(Box-Muller)



Rejection method
‣ When           is not easily invertible and no other tricks 

can be applied, try the following rejection method:  

‣ Generate a sequence                             with the 
elements drawn uniformly from 

‣ Generate a sequence                           with the 
elements drawn uniformly from  

‣ Discard elements from the first sequence if 

P (x)

(x1, x2, x3, · · · )

p(xi) < �i

[xmin, xmax]

(�1, �2, �3, · · · )
[0, p

max

]



Rejection method

‣ Works by throwing away 
results that are rare 

‣ Some limitations: the 
probability distribution 
must be bounded and 
have a finite range x

xmin xmax

pmax

p(x)
reject

accept


