Random processes ana
probability distributions

Phys 750 Lecture |6



Random processes

» Many physical processes are random in character: e.q.,

» nuclear decay (Poisson distributed event count)
e (A7)
k!

» motion of “thermalized” interacting particles
(Maxwell-Boltzmann speed profile)
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Random processes

» Probabilistic descriptions often arise from the complex
behaviour of many interacting degrees of freedom

» E.g., Temperature is an emergent phenomenon:

» it's a collective property of a large number of
interacting particles

» particles exchange energy and establish a MB
distribution, characterized by a single parameter T
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Ergodicity

» For a large collection of non-
interacting oscillators, the phase
space frajectory of each individual
oscillator is a closed circle

> 3

9

> q



Ergodicity

» For a large collection of non-
interacting oscillators, the phase
space frajectory of each individual
oscillator is a closed circle

» As we turn on inferactions, the
trajectories are perturbed

> 3

> q



Ergodicity

» For a large collection of non-
interacting oscillators, the phase
space frajectory of each individual
oscillator is a closed circle

» As we turn on inferactions, the
trajectories are perturbed

» The trajectory density averaged over
all oscillators can be understood as a
probability density
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Ergodicity

» Consider an idealized billiards system. . .
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Statistical physics

» Ergodicity is the basis for statistical physics

» We assume that all states in the phase space are
accessible and have equal weight

» |n a system at fixed temperature, states are visited
according to the Boltzmann factor:

7 Z o~ En /KT

» Stochastic process with transition probabilities given by

P~ e (BnmEm)/kT



Some subtleties

» Can we prove ergodicity? Rarely

» What if the dynamics are ergodic but the timescale for
traversing the phase space is slow? Glassiness

» What if the dynamics are ergodic within distinct regions of
the phase space that are only fenuously connected? Rare
tunnelling events

» How do we model such processes on a digital state
machine that is purely deterministic? Pseudo-randomness




Random numbers

» Misleading terminology
» Is 23 a random number?

» In what sense could it be random?



Random numbers

» What is a random number?
» Really no such thing

» Loose term of art referring to a sequence of
independent numbers drawn randomly from some
distribution

» Typically these are integer or real values uniformly
distributed in some finite range



Random numbers

» An infinite sequence of digits:

99181956211585263425870769311327827177953470784192 - - -

» Is it random? (Humans are terrible af judging)
» Each of the digits 09 occurs 1o of the time

» Each pair of two successive digits occurs 195 of the time



Random numbers

» Consider the first one million digits of the sequence:
» digit counts are distributed around the average

» every pattern is equally probable
P(000000---) = P(193273---)

» digits are completely uncorrelated

given 000000 - - - 0z, P(z =0) = &



Random numbers

» How do we generate sequences of random numbers?

» Strictly speaking, this isn't possible on a deterministic
computer using finite arithmetic

» Nonetheless, it may be possible to construct long
sequences with the appearance of randomness

» Probably okay if the relationship between numbers has
no physical significance



Linear congruential generator

» Want a random sequence of real numbers (U,,) € [0, 1)
» Popular strategy:

» use fractions U,, = X, /m built from the sequence of
Infegers (X,,) € {0,1,2,...,m — 1}

» linear congruence scheme (Lehmer 1948)

n—l—l @X’n mOd@
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Linear congruential generator

» Recursion builds off an initial “seed” value, X,
X0

X1 = (aXg + c¢)modm
X9 = (al(aXg + ¢) modm| + ¢) modm

» Requires careful choice of paramefers:

Xo=a=c=17

(Xn) =(7,6,9,0)(7,6,9,0)... =10

very non-random, period 4



Linear congruential generator

» Any generator of the form X, , = F(X,,) taking m
distinct values must be periodic with period P < m

» For a linear congruential generator, one can show that
the period is maximum if

e c is relatively prime to m;
e b =a — 1 is a multiple of p, for very prime p dividing m

e b is a multiple of 4, if m is a multiple of 4.



Linear congruential generator

» For the sake of efficiency, specialize to the case m = 232
» Advantages:
» each integer fits into exactly one computer word

» the modulus (an expensive division operation) is
automatically handled in hardware by overflow

» A specialized version of the maximum period rule:

c=1
a =5 mod &



Linear congruential generator

» A long repeating cycle does not imply randomness:

(X,)=0,1,2,....m—1 (a=c=1)
» We require weak correlation between elements,
(X Xg) ~ (X;)(Xk) (J # k),

especially when |5 — &| is small

» Judged empirically via statistical tests (Die Hard)



Linear congruential generator

a = 10,c =23, m = 566

» Some other considerations:

» best it a/m is not too small

- . Xop,
» least significant bits are more "

highly correlated

» complete orbits lie in
hyperplanes (Marsaglia 1968): Xon

(X07X17 R 7Xq—1)7 (anXq—I-la R 7X2q—1)7 R



Probability distributions

» Suppose there are IV discrete events occur with
probabilities p1, ps, ..., pN

» Since something must happen, the total sum is

pr+p2+---+pyv=1

» Given a randomly generated number ¢ € [0, 1], how can
we select one of the v events?



Probability distributions

» Each even 7 occupies a width p; in the interval:

11— 0<&E<p
2 p1 <E<p1+po
3 p1+p2 <& < p1+p2+p3
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Probability distributions

» The relevant quantity is the cumulative probability,
P = ij
j=1

» Similarly, for continuous distributions, we construct a
cumulative probability distribution

P = [ dypy
from the probability density p(x)



Probability distributions

» Sampling via =z — P~1([0, 1])
p(Aa:) P(Ax)




Inverse transform method

(1/N)e ™/ if 0 <z < o0

» Example: p(z) = {O if x <0

» Back map gives £ — P(x) = /o dyp(y) =1— e~/

» By inversion, we see that = — —X1In(1 — &) with ¢
drawn uniformly from [0, 1] is equivalent fo = drawn
from the nonuniform distribution p(x)



Inverse transform method

» What about cases where no analytic inverse exists?

» [n some cases, related multivariate distributions are
invertible: e.g. Gaussian distribution

2 /o 2
e~ /20
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p(x)

» Consider the product
6—(5132—|—y2)/202

p(a,y) = p)ply) = ——



Inverse transform method

» From radial coordinates » = /22 + 42
0 =tan ' (y/x)

we can further transform p = 7%/2 so that

1 r = \/2pcosf

0)dpdd = —e Pdp db
p(p,0)dp ¢ "dp Y= /2500

» Sampling is now possible with two random variables:

r — /—2In(1 — & ) cos(2n&s)  (Box-Muller)



Rejection method

» When P(z) is not easily invertible and no other tricks
can be applied, try the following rejection method:

» Generate a sequence (1, z2, 3, - - - ) with the
elements drawn uniformly from [Zmin, Zmax]

» Generate a sequence (£1,&2,&3, -+ ) with the
elements drawn uniformly from [0, pyas]

» Discard elements from the first sequence it p(z;) < &



Rejection method

, p(x) .
» Works by throwing away A reject

results that are rare Pmax —

» Some limitations: the
probability distribution
must be bounded and
have a finite range




