
Random processes and
probability distributions

Phys 750 Lecture 16

Random processes
‣ Many physical processes are random in character: e.g.,

‣ nuclear decay (Poisson distributed event count)  
 

‣ motion of “thermalized” interacting particles
(Maxwell-Boltzmann speed profile)

P (k, ⇥) =
e��⇥ (�⇥)

k!

f(v) ⇥ v2 exp
�
�mv2

2kT

⇥

Random processes
‣ Probabilistic descriptions often arise from the complex

behaviour of many interacting degrees of freedom

‣ E.g., Temperature is an emergent phenomenon:

‣ it’s a collective property of a large number of
interacting particles

‣ particles exchange energy and establish a MB
distribution, characterized by a single parameter T

0
0

0.3

0.25

0.2

0.15

0.1

0.05

2 4 6 8 10

�2e�m�
2/2kT

velocity �

Prob(�)

Lennard-Jones gas
simulation data

T = 5.607

Ergodicity

q

p

‣ For a large collection of non-
interacting oscillators, the phase
space trajectory of each individual
oscillator is a closed circle

Ergodicity

q

p

‣ For a large collection of non-
interacting oscillators, the phase
space trajectory of each individual
oscillator is a closed circle

‣ As we turn on interactions, the
trajectories are perturbed

Ergodicity

q

p

‣ For a large collection of non-
interacting oscillators, the phase
space trajectory of each individual
oscillator is a closed circle

‣ As we turn on interactions, the
trajectories are perturbed

‣ The trajectory density averaged over
all oscillators can be understood as a
probability density

Ergodicity

non-ergodic ergodic

‣ Consider an idealized billiards system. . .

Statistical physics
‣ Ergodicity is the basis for statistical physics

‣ We assume that all states in the phase space are
accessible and have equal weight

‣ In a system at fixed temperature, states are visited
according to the Boltzmann factor:

‣ Stochastic process with transition probabilities given by

Z =
�

n

e�En/kT

Pn⇥m � e�(En�Em)/kT

Some subtleties
‣ Can we prove ergodicity? Rarely

‣ What if the dynamics are ergodic but the timescale for
traversing the phase space is slow? Glassiness

‣ What if the dynamics are ergodic within distinct regions of
the phase space that are only tenuously connected? Rare
tunnelling events

‣ How do we model such processes on a digital state
machine that is purely deterministic? Pseudo-randomness

Random numbers

‣ Misleading terminology

‣ Is 23 a random number?

‣ In what sense could it be random?

Random numbers
‣ What is a random number?

‣ Really no such thing

‣ Loose term of art referring to a sequence of
independent numbers drawn randomly from some
distribution

‣ Typically these are integer or real values uniformly
distributed in some finite range

Random numbers

‣ An infinite sequence of digits:

‣ Is it random? (Humans are terrible at judging)

‣ Each of the digits occurs of the time

‣ Each pair of two successive digits occurs of the time

1
100 – 9

1
100

99181956211585263425870769311327827177953470784192 · · ·

Random numbers

‣ Consider the first one million digits of the sequence:

‣ digit counts are distributed around the average

‣ every pattern is equally probable 

‣ digits are completely uncorrelated

given ,000000 · · · 0x P (x = 0) = 1
10

P (000000 · · ·) = P (193273 · · ·)

Random numbers
‣ How do we generate sequences of random numbers?

‣ Strictly speaking, this isn’t possible on a deterministic
computer using finite arithmetic

‣ Nonetheless, it may be possible to construct long
sequences with the appearance of randomness

‣ Probably okay if the relationship between numbers has
no physical significance

Linear congruential generator
‣ Want a random sequence of real numbers

‣ Popular strategy:

‣ use fractions built from the sequence of
integers

‣ linear congruence scheme (Lehmer 1948)

Un = Xn/m

(Xn) ⇥ {0, 1, 2, . . . ,m� 1}

(Un) � [0, 1)

Xn+1 = (aXn + c) mod m

multiplier increment
modulus

Linear congruential generator
‣ Recursion builds off an initial “seed” value,  
 
 
 

‣ Requires careful choice of parameters:

X0

X1 = (aX0 + c) mod m

X2 = (a[(aX0 + c) mod m] + c) mod m

...

X0

X0 = a = c = 7
m = 10(Xn) = 7, 6, 9, 0, 7, 6, 9, 0, . . .

very non-random, period 4

Linear congruential generator
‣ Any generator of the form taking

distinct values must be periodic with period

‣ For a linear congruential generator, one can show that
the period is maximum if

• c is relatively prime to m;

• b = a� 1 is a multiple of p, for very prime p dividing m

• b is a multiple of 4, if m is a multiple of 4.

Xn+1 = F (Xn) m

P � m

Linear congruential generator
‣ For the sake of efficiency, specialize to the case

‣ Advantages:

‣ each integer fits into exactly one computer word

‣ the modulus (an expensive division operation) is
automatically handled in hardware by overflow

‣ A specialized version of the maximum period rule:
c = 1

a � 5 mod 8

m = 232

Linear congruential generator
‣ A long repeating cycle does not imply randomness:  
 

‣ We require weak correlation between elements, 
 
 
especially when is small

‣ Judged empirically via statistical tests (Die Hard)

(Xn) = 0, 1, 2, . . . ,m� 1 (a = c = 1)

|j � k|

⇤XjXk⌅ � ⇤Xj⌅⇤Xk⌅ (j ⇥= k),

Linear congruential generator
‣ Some other considerations:

‣ best if is not too small

‣ least significant bits are more
highly correlated

‣ complete orbits lie in
hyperplanes (Marsaglia 1968):

(X0, X1, . . . , Xq�1), (Xq, Xq+1, . . . , X2q�1), . . .

a/m

a = 10, c = 23, m = 566

X2n

X2n+1

Probability distributions
‣ Suppose there are discrete events occur with

probabilities

‣ Since something must happen, the total sum is

‣ Given a randomly generated number , how can
we select one of the events?

p1, p2, . . . , pN

N

p1 + p2 + · · · + pN = 1

� � [0, 1]
N

Probability distributions
‣ Each even occupies a width in the interval:

1⇥ 0 < � < p1

2⇥ p1 < � < p1 + p2

3⇥ p1 + p2 < � < p1 + p2 + p3

...
N ⇥ p1 + · · · + pN�1 < � < 1

i pi

0 1p1 p2 pN· · ·

Probability distributions
‣ The relevant quantity is the cumulative probability,

‣ Similarly, for continuous distributions, we construct a
cumulative probability distribution 
 
 
from the probability density

P (x) =
� x

�⇥
dy p(y)

p(x)

Pi =
iX

j=1

pj

Probability distributions
‣ Sampling via

x

p(x)

x

P(x)

x

p(x)

x

ξ

ξ

P(x)

x� P�1([0, 1])

Inverse transform method

‣ Example:

‣ Back map gives

‣ By inversion, we see that with
drawn uniformly from is equivalent to drawn
from the nonuniform distribution

p(x) =

�
(1/�)e�x/� if 0 � x <⇥
0 if x < 0

� ⇥ P (x) =
� x

0
dy p(y) = 1� e�x/�

�

[0, 1] x

p(x)

x⇥ �� ln(1� ⇥)

Inverse transform method
‣ What about cases where no analytic inverse exists?

‣ In some cases, related multivariate distributions are
invertible: e.g. Gaussian distribution  
 

‣ Consider the product

p(x) =
e�x2/2�2

�
2�⇥2

p(x, y) = p(x)p(y) =
e�(x2+y2)/2�2

2�⇥2

Inverse transform method
‣ From radial coordinates  
 
 
we can further transform so that  
 

‣ Sampling is now possible with two random variables:

r =
�

x2 + y2

� = tan�1(y/x)

� = r2/2

p(⇤, �)d⇤ d� =
1
2⇥

e��d⇤ d�

x⇥
�
�2 ln(1� �1) cos(2⇥�2)

y =
�

2⇥ sin �

x =
�

2⇥ cos �

(Box-Muller)

Rejection method
‣ When is not easily invertible and no other tricks

can be applied, try the following rejection method:

‣ Generate a sequence with the
elements drawn uniformly from

‣ Generate a sequence with the
elements drawn uniformly from

‣ Discard elements from the first sequence if

P (x)

(x1, x2, x3, · · ·)

p(xi) < �i

[xmin, xmax]

(�1, �2, �3, · · ·)
[0, p

max

]

Rejection method

‣ Works by throwing away
results that are rare

‣ Some limitations: the
probability distribution
must be bounded and
have a finite range x

xmin xmax

pmax

p(x)
reject

accept

