Random processes and probability distributions

Phys 750 Lecture 16

Random processes

- Many physical processes are random in character: e.g.,
- nuclear decay (Poisson distributed event count)

$$
P(k, \tau)=\frac{e^{-\lambda \tau}(\lambda \tau)}{k!}
$$

- motion of "thermalized" interacting particles (Maxwell-Bolizmann speed profile)

$$
f(v) \sim v^{2} \exp \left(-\frac{m v^{2}}{2 k T}\right)
$$

Random processes

- Probabilistic descriptions often arise from the complex behaviour of many interacting degrees of freedom
- E.g., Temperature is an emergent phenomenon:
- it's a collective property of a large number of interacting particles
- particles exchange energy and establish a MB distribution, characterized by a single parameter T

Lennard-Jones gas

Ergodicity

- For a large collection of noninteracting oscillators, the phase space trajectory of each individual oscillator is a closed circle

Ergodicity

- For a large collection of noninteracting oscillators, the phase space trajectory of each individual oscillator is a closed circle
- As we turn on interactions, the trajectories are perturbed

Ergodicity

- For a large collection of noninteracting oscillators, the phase space trajectory of each individual oscillator is a closed circle
- As we turn on interactions, the trajectories are perturbed
- The trajectory density averaged over
 all oscillators can be understood as a probability density

Ergodicity

- Consider an idealized billiards system. . .

Statistical physics

- Ergodicity is the basis for statistical physics
- We assume that all states in the phase space are accessible and have equal weight
- In a system at fixed temperature, states are visited according to the Boltzmann factor:

$$
Z=\sum_{n} e^{-E_{n} / k T}
$$

- Stochastic process with transition probabilities given by

$$
P_{n \rightarrow m} \sim e^{-\left(E_{n}-E_{m}\right) / k T}
$$

Some subtleties

- Can we prove ergodicity? Rarely
- What if the dynamics are ergodic but the timescale for traversing the phase space is slow? Glassiness
- What if the dynamics are ergodic within distinct regions of the phase space that are only tenuously connected? Rare tunnelling events
- How do we model such processes on a digital state machine that is purely deterministic? Pseudo-randomness

Random numbers

- Misleading terminology
- Is 23 a random number?
- In what sense could it be random?

Random numbers

- What is a random number?
- Really no such thing
- Loose term of art referring to a sequence of independent numbers drawn randomly from some distribution
- Typically these are integer or real values uniformly distributed in some finite range

Random numbers

- An infinite sequence of digits:
$99181956211585263425870769311327827177953470784192 \ldots$
- Is it random? (Humans are terrible at judging)
- Each of the digits 0-9 occurs $\frac{1}{10}$ of the time
- Each pair of two successive digits occurs $\frac{1}{100}$ of the time

Random numbers

- Consider the first one million digits of the sequence:
- digit counts are distributed around the average
- every pattern is equally probable

$$
P(000000 \cdots)=P(193273 \cdots)
$$

- digits are completely uncorrelated

$$
\text { given } 000000 \cdots 0 x, P(x=0)=\frac{1}{10}
$$

Random numbers

- How do we generate sequences of random numbers?
- Strictly speaking, this isn't possible on a deterministic computer using finite arithmetic
- Nonetheless, it may be possible to construct long sequences with the appearance of randomness
- Probably okay if the relationship between numbers has no physical significance

Linear congruential generator

- Want a random sequence of real numbers $\left(U_{n}\right) \in[0,1)$
- Popular strategy:
- use fractions $U_{n}=X_{n} / m$ built from the sequence of integers $\left(X_{n}\right) \in\{0,1,2, \ldots, m-1\}$
- linear congruence scheme (Lehmer 1948)

Linear congruential generator

- Recursion builds off an initial "seed" value, X_{0}

$$
\begin{aligned}
& X_{0} \\
& X_{1}=\left(a X_{0}+c\right) \bmod m \\
& X_{2}=\left(a\left[\left(a X_{0}+c\right) \bmod m\right]+c\right) \bmod m
\end{aligned}
$$

- Requires careful choice of parameters:

Linear congruential generator

- Any generator of the form $X_{n+1}=F\left(X_{n}\right)$ taking m distinct values must be periodic with period $P \leq m$
- For a linear congruential generator, one can show that the period is maximum if
- c is relatively prime to m;
- $b=a-1$ is a multiple of p, for very prime p dividing m
- b is a multiple of 4 , if m is a multiple of 4 .

Linear congruential generator

- For the sake of efficiency, specialize to the case $m=2^{32}$
- Advantages:
- each integer fits into exactly one computer word
- the modulus (an expensive division operation) is automatically handled in hardware by overflow
- A specialized version of the maximum period rule:

$$
\begin{gathered}
c=1 \\
a \equiv 5 \bmod 8
\end{gathered}
$$

Linear congruential generator

- A long repeating cycle does not imply randomness:

$$
\left(X_{n}\right)=0,1,2, \ldots, m-1 \quad(a=c=1)
$$

- We require weak correlation between elements,

$$
\left\langle X_{j} X_{k}\right\rangle \approx\left\langle X_{j}\right\rangle\left\langle X_{k}\right\rangle(j \neq k),
$$

especially when $|j-k|$ is small

- Judged empirically via statistical tests (Die Hard)

Linear congruential generator

- Some other considerations:
- best if a / m is not too small
- least significant bits are more highly correlated
- complete orbits lie in hyperplanes (Marsaglia 1968):

$$
a=10, c=23, m=566
$$

$$
\left(X_{0}, X_{1}, \ldots, X_{q-1}\right),\left(X_{q}, X_{q+1}, \ldots, X_{2 q-1}\right), \ldots
$$

Probability distributions

- Suppose there are N discrete events occur with probabilities $p_{1}, p_{2}, \ldots, p_{N}$
- Since something must happen, the total sum is

$$
p_{1}+p_{2}+\cdots+p_{N}=1
$$

- Given a randomly generated number $\xi \in[0,1]$, how can we select one of the N events?

Probability distributions

- Each even i occupies a width p_{i} in the interval:

Probability distributions

- The relevant quantity is the cumulative probability,

$$
P_{i}=\sum_{j=1}^{i} p_{j}
$$

- Similarly, for continuous distributions, we construct a cumulative probability distribution

$$
P(x)=\int_{-\infty}^{x} d y p(y)
$$

from the probability density $p(x)$

Probability distributions

- Sampling via $x \leftarrow P^{-1}([0,1])$

Inverse transform method

- Example: $p(x)= \begin{cases}(1 / \lambda) e^{-x / \lambda} & \text { if } 0 \leq x<\infty \\ 0 & \text { if } x<0\end{cases}$
- Back map gives $\xi \rightarrow P(x)=\int_{0}^{x} d y p(y)=1-e^{-x / \lambda}$
- By inversion, we see that $x \leftarrow-\lambda \ln (1-\xi)$ with ξ drawn uniformly from $[0,1]$ is equivalent to x drawn from the nonuniform distribution $p(x)$

Inverse transform method

- What about cases where no analytic inverse exists?
- In some cases, related multivariate distributions are invertible: e.g. Gaussian distribution

$$
p(x)=\frac{e^{-x^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}
$$

- Consider the product

$$
p(x, y)=p(x) p(y)=\frac{e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}}}{2 \pi \sigma^{2}}
$$

Inverse transform method

- From radial coordinates $r=\sqrt{x^{2}+y^{2}}$

$$
\theta=\tan ^{-1}(y / x)
$$

we can further transform $\rho=r^{2} / 2$ so that

$$
p(\rho, \theta) d \rho d \theta=\frac{1}{2 \pi} e^{-\rho} d \rho d \theta \quad \begin{array}{ll}
x & =\sqrt{2 \rho} \cos \theta \\
y & =\sqrt{2 \rho} \sin \theta
\end{array}
$$

- Sampling is now possible with two random variables:

$$
x \leftarrow \sqrt{-2 \ln \left(1-\xi_{1}\right)} \cos \left(2 \pi \xi_{2}\right) \quad \text { (Box-Muller) }
$$

Rejection method

- When $P(x)$ is not easily invertible and no other tricks can be applied, try the following rejection method:
- Generate a sequence $\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ with the elements drawn uniformly from $\left[x_{\text {min }}, x_{\max }\right]$
- Generate a sequence ($\xi_{1}, \xi_{2}, \xi_{3}, \cdots$) with the elements drawn uniformly from [$0, p_{\text {max }}$]
- Discard elements from the first sequence if $p\left(x_{i}\right)<\xi_{i}$

Rejection method

- Works by throwing away results that are rare
- Some limitations: the probability distribution must be bounded and have a finite range

