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So far, our discussion of quantum mechanics has focussed on solving the Schrödinger equation for a single
particle in one spatial dimension (1D). How do we adapt our numerical methods to handle the more general
many-body problem in higher dimensions?

Dimensionality

1D is special because the boundary—marked, e.g., by the edges of an impenetrable potential well—consists of
just two points. In 2D, the boundary is a line; in 3D a surface, etc. Hence, the shooting and matching methods
are no longer very useful. Remember that if we have a quantum particle confined to the line segment [0, L], then
we can assume  (0) = 0 and  ′(x) = �. The value of � is fixed after the fact by imposing the normalization
condition ∫ dx | (x)|2 = 1. Given a guess value for the energy E, we can integrate to the right edge of the well
and use the roots of g(E) =  (L) to determine the eigenenergies.

In 2D, we can chose an arbitrary point on the boundary with  (x0, y0) = 0, but the initial values of the
spatial derivatives in two orthogonal directions,  x(x0, y0) = �x and  y(x0, y0) = �y, have to be specified. The
eigenstates now correspond to the roots of

g(E, �x, �y) = ∫boundary
d2r| (x, y)|2.

One free parameter is removed by fixing the normalization, but this is still a root-finding problem in a two-
dimensional space. (Quite tricky, because we no longer have an intermediate value theorem to bracket the roots!)
There’s also the difficulty that the points in a simple, orthogonal spatial grid may not align with the boundary; on
the other hand, a grid adapted to the boundaries will required a more careful treatment of the finite differences.

Multiple particles

In the case ofN particles living in a D-dimensional space, the wavefunction of the system

Ψ(r1, r2,… , rN )

is a function ofND real variables. The Hamiltonian can now have many-body interaction terms:

Ĥ =
∑

i

(

− ∇
2

2mi
+ V (ri)

)

+
∑

i<j
U (ri − rj).

Another complication is that the particles will have either fermionic or bosonic “statistics,” meaning that they
may or may not experience a � phase shift when two particles are exchanged. That is to say,

Ψ(r1,… , ri,… , rj ,… , rN ) = ∓Ψ(r1,… , rj ,… , ri,… , rN ).

Any solution you generate must be properly (anti)symmetrized.

Matrix mechanics

In most cases, and especially when there are strong interactions between particles, it is not simple to solve the
Schrödinger equation. So far, our strategy has been to solve for the energy eigenstates, expand the t = 0 snapshot
 (x, 0) in that basis, and compute (x, t) based on the e−iEnt∕ℏ phase evolution in each mode. In general, though,
finding the eigenstates is nontrivial.



Even if we don’t have access to the eigenstates, we can always concoct a complete set of wavefunctions to
serve as a basis. Now suppose we have a complete set {�n} that is finite, or at the very least countably infinite.
Then we define a matrixHn,m and a vector  n according to

Hn,m = ⟨n|Ĥ|m⟩ = ∫ d3r �n(r)∗Ĥ�m(r)

 n = ⟨n| ⟩ = ∫ d3r �n(r)∗ (r)

Inserting the completeness relation
∑

n |n⟩⟨n| = 1 into Ĥ| ⟩ = E| ⟩ gives

E n = E⟨n| ⟩ = ⟨n|Ĥ
(

∑

m
|m⟩⟨m

)

| ⟩

=
∑

m
⟨n|Ĥ|m⟩⟨m| ⟩ =

∑

m
Hn,m n.

(1)

This is just the matrix eigenvalue problem
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This system of equations has solutions whenever the characteristic polynomial �(E) = det(H − E) vanishes.
For each root E(�), there is a corresponding eigenvector  (�)n . If the size of the matrix is not too unmanage-
able, then the eigenvalue problem can be solved numerically using, e.g., LAPACK routines. This is called exact
diagonalization. Under the appropriate unitary transformation,

U †HU =
⎛
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⋱

⎞

⎟

⎟

⎠

But for many-body problems, the size of the Hilbert space usually grows exponentially in the number of
particles, so a direct solution is not always practical. Nonetheless, it may be that you don’t need to know all the
eigenstates. For example physical properties at low temperatures (T ≪ E1 − E0) are dominated by the ground
state (the eigenstate of lowest energy).

Here we outline the power method for finding the ground state. Choose a constant C large enough so that all
the diagonal terms Ẽn = En−C in thematrixU †HU−CI are strictly negative. Pick a trial state (0) =

∑

n c
(0)
n �n

expressed as an expansion in the (as yet unknown) energy eigenstates. An improved estimate is given by

 (1) = (C − U †HU ) (0) =
∑

n
c(0)n (C − En)�n.

This can be done iteratively:

 (k) =
∑

n
c(0)n (C − En)

k�n

= (C − E0)k
[

c(0)0  0 + c
(0)
1

(

C − E1
C − E0

)k

�1 + c
(0)
2

(

C − E2
C − E0

)k

�2 +⋯
]

Note that all but the first term vanish in the large k limit:

lim
k→∞

(C − U †HU )k (0) = �0.



But is this useful? We don’t know the transformation U . It turns out, that doesn’t matter. Since C − U †HU =
U †(C − H)U , we can invert the transformation and show that the power method yields the ground state in
whatever basis we work in:

lim
k→∞

(C −H)k(U (0)) = U�0.

A related but slightly different set of algorithms goes under the name Lanczos methods.

Variational principle

The ground state | 0⟩ satisfies Ĥ| 0⟩ = E| 0⟩. Hence, the exact equality

E0 =
⟨ 0|Ĥ| 0⟩
⟨ 0| 0⟩

holds. It is also true that for any arbitrary wavefunction obeys the inequality

E0 ≤
⟨ |Ĥ| ⟩
⟨ | ⟩

.

In other words, the true ground state energy E0 forms an absolute lower bound on the energy expectation value
of any state. We can show this as follows. Express  =

∑

n cn�n in the basis of energy eigenstates. Then

⟨ |H| ⟩ =
∑

n,m
c∗ncm⟨�n|Ĥ|�m⟩

=
∑

n,m
c∗ncmEn�n,m

=
∑

n
En|cn|

2

≥ E0
∑

n
|cn|

2 = E0⟨ | ⟩.

This means thatE[{cn}] defines a complicated energy landscape (with dimension equal to the rank of the Hamil-
tonian matrix), whose global minimum corresponds to the ground state.

In situations where the Hilbert space is too large, the optimization problem becomes intractable. In that case
it may be better to work with a smaller set of physically-motivated states {�1,… , �M} withM ≪ dim(H). The
trial wavefunction  =

∑M
m=1 �m�m can be optimized by finding the global minimum in the more manageable

E[{�m}] landscape. The extremal state is no longer guaranteed to be the true ground state, but so long as the
{�m} are well chosen, it may be a very good approximation to the ground state.


