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Route to quantum mechanics
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‣ Basic postulate of quantum mechanics: a particle can be 
described by its classical Hamiltonian with the additional 
requirement that its conjugate variables do not commute 
 

‣ Impose the commutation relation 
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Route to quantum mechanics
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‣ The coordinates and momenta of the system are 
promoted from mere numbers to differential operators  
 

‣ Verify that this definition of momentum works:
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Schrödinger equation
‣ Evolution of a single quantum particle is governed by the 

time-dependent Schrödinger equation (TDSE)  
 

‣ Describes a field             rather than a trajectory 

‣ Takes the form of a heat equation with sources/sinks but 
in imaginary time: 
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Wavefunction
‣               is complex-valued and represents the 

“probability amplitude” of a particle in space and time 

‣ The conventional probability distribution                     
must be (at all times) normalizable: 

‣ Despite the probabilistic interpretation, the evolution of 
the wavefunction is completely deterministic
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Time evolution
‣ TDSE is a PDE of the form  

‣ Has a formal solution 
 
  

‣ Evolution is unitary  
 
 
 
and hence time-reversible and norm-preserving

i~ ⇥

⇥t
�(x, t) = Ĥ�(x, t)
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Energy eigenstates
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‣ Analogue of classical “normal modes” (Fourier 
transformed in time) are the energy eigenstates  

‣ Substitution of                                            into  
 
 
 
yields the time-independent Schrödinger equation
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Energy eigenstates

‣ Rewrite as 

‣ Reminiscent of the Poisson equation (cf.                 ), but 
with a complicated source term: 

‣ sign of                    (the curvature) is spatially varying 

‣ proportional to the wavefunction itself (which amounts 
to an additional self-consistency condition)
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Energy eigenstates
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Energy eigenstates
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Energy eigenstates
‣ The eigenfunctions must be solved in conjunction with 

appropriate boundary conditions and/or asymptotic 
behaviour; e.g., 
                       requires that              wherever  

‣ “Quantization” arises when only discrete values of  
lead to normalizable solutions 

‣ Spectrum of eigenergies is generally discrete when the 
particle is contained and continuous otherwise 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Spectral decomposition
‣ Energy eigenstates                 form a complete basis 

‣ Orthonormal with respect to overlaps (L2 inner products)  

‣ Any valid wave function can be expanded in this basis
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Spectral decomposition

‣ Snapshot at time           :  
 

‣ Characterized by components along each basis function

⇥(x, 0) =
X

n

cn�n(x)

cn = ��n|⇥(t = 0)⇥ =
Z

dx�n(x)
⇤⇥(x, 0)

t = 0



Spectral decomposition
‣ Since,                           the complete time evolution 

enters as an additional set of phase factors  
 
 
 

‣ Introducing an upper cutoff to the summation discards 
physics on time scales shorter than
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