Quantum mechanics

Phys 750 Lecture 14

Route to quantum mechanics

- Basic postulate of quantum mechanics: a particle can be described by its classical Hamiltonian with the additional requirement that its conjugate variables do not commute

- Impose the commutation relation

$$
[x, p] \equiv x p-p x=i \hbar \longleftarrow \text { Planck }
$$

constant

Route to quantum mechanics

- The coordinates and momenta of the system are promoted from mere numbers to differential operators

$$
x_{\mathrm{cl}} \rightarrow x, \quad p_{\mathrm{cl}} \rightarrow p=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

- Verify that this definition of momentum works:

$$
\begin{array}{rlr}
x p F(x) & =-i \hbar x F^{\prime}(x) \\
p x F(x) & =-i \hbar \frac{\partial}{\partial x}(x F(x)) & \longrightarrow x, p] F(x)=i \hbar F(x) \\
& - & \forall F(x)
\end{array}
$$

Schrödinger equation

- Evolution of a single quantum particle is governed by the time-dependent Schrödinger equation (TDSE)
$\begin{gathered}\text { 1st order } \\ \text { in time } \\ i \hbar \frac{\partial \psi(x, t)}{\longrightarrow}(\partial t)\end{gathered}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\left.\partial x^{2}\right)} \psi(x, t)+V(x) \psi(x, t)$ 2nd order
- Describes a field $\psi(x, t)$ rather than a trajectory $x(t)$
- Takes the form of a heat equation with sources/sinks but in imaginary time:

$$
\left(\frac{\partial}{\partial(i t)}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right) \psi=0
$$

Wavefunction

- $\psi(x, t)$ is complex-valued and represents the "probability amplitude" of a particle in space and time
- The conventional probability distribution $\sim|\psi(x, t)|^{2}$ must be (at all times) normalizable:

$$
\int d x|\psi(x, t)|^{2}=1
$$

- Despite the probabilistic interpretation, the evolution of the wavefunction is completely deterministic

Time evolution

- TDSE is a PDE of the form $i \hbar \frac{\partial}{\partial t} \psi(x, t)=\underset{\uparrow}{\hat{H}} \psi(x, t)$
- Has a formal solution quantum Hamiltonian

$$
\begin{aligned}
& \psi\left(x, t_{2}\right)=e^{-i\left(t_{2}-t_{1}\right) \hat{H} / \hbar} \psi\left(x, t_{1}\right)=\underset{\uparrow}{\hat{U}}\left(t_{2}, t_{1}\right) \psi\left(x, t_{1}\right) \\
& \text { Evolution is unitary }
\end{aligned}
$$

$$
\begin{aligned}
& \hat{U}^{\dagger} \hat{U}=\hat{U} \hat{U}^{\dagger}=\hat{1} \\
& \hat{U}^{-1}=\hat{U}^{\dagger}
\end{aligned}
$$

and hence time-reversible and norm-preserving

Energy eigenstates

- Analogue of classical "normal modes" (Fourier transformed in time) are the energy eigenstates
- Substitution of $\psi(x, t)=\psi_{E}(x) e^{-i E t / \hbar}$ into

$$
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x, t)
$$

yields the time-independent Schrödinger equation

$$
E \psi_{E}(x)=-\frac{\hbar^{2}}{2 m} \psi_{E}^{\prime \prime}(x)+V(x) \psi_{E}(x)
$$

Energy eigenstates

- Rewrite as $\nabla^{2} \psi_{E}(x)=\frac{2 m}{\hbar^{2}}[V(x)-E] \psi_{E}(x)$
- Reminiscent of the Poisson equation (cf. $\nabla^{2} \phi=\rho$), but with a complicated source term:
- sign of $V(x)-E$ (the curvature) is spatially varying
- proportional to the wavefunction itself (which amounts to an additional self-consistency condition)

Energy eigenstates

Energy eigenstates

Energy eigenstates

- The eigenfunctions must be solved in conjunction with appropriate boundary conditions and/or asymptotic behaviour; e.g.,
$|V \psi|<\infty$ requires that $\psi \rightarrow 0$ wherever $V \rightarrow \infty$
- "Quantization" arises when only discrete values of E lead to normalizable solutions
- Spectrum of eigenergies is generally discrete when the particle is contained and continuous otherwise

Spectral decomposition

- Energy eigenstates $\left\{\phi_{n}(x)\right\}$ form a complete basis
- Orthonormal with respect to overlaps (L2 inner products)

$$
\begin{aligned}
\left\langle\phi_{n} \mid \phi_{n^{\prime}}\right\rangle=\int d x \phi_{n}(x)^{*} \phi_{n^{\prime}}(x) & =\delta_{n, n^{\prime}} \\
\sum_{n} \phi_{n}(x)^{*} \phi_{n}\left(x^{\prime}\right) & =\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

- Any valid wave function can be expanded in this basis

Spectral decomposition

- Snapshot at time $t=0$:

$$
\psi(x, 0)=\sum_{n} c_{n} \phi_{n}(x)
$$

- Characterized by components along each basis function

$$
c_{n}=\left\langle\phi_{n} \mid \psi(t=0)\right\rangle=\int d x \phi_{n}(x)^{*} \psi(x, 0)
$$

Spectral decomposition

- Since, $\hat{H} \phi_{n}=E_{n} \phi_{n}$ the complete time evolution enters as an additional set of phase factors

$$
\begin{aligned}
\phi(x, t) & =e^{-i t \hat{H} / \hbar} \sum_{n} c_{n} \phi_{n}(x) \\
& =\sum_{n} c_{n} e^{-i t E_{n} / \hbar} \phi_{n}(x)
\end{aligned}
$$

- Introducing an upper cutoff to the summation discards physics on time scales shorter than

$$
\Delta t \lesssim \frac{\hbar}{E_{\text {cutoff }}}
$$

