Quantum mechanics

Phys 750 Lecture 14



Route to quantum mechanics

» Basic postulate of quantum mechanics: a particle can be
described by its classical Hamiltonian with the additional
requirement that its conjugate variables do not commute
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» Impose the commutation relation
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Route to quantum mechanics

» The coordinates and momenta of the system are
promoted from mere numbers to differential operators
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» Verify that this definition of momentum works:
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Schrdodinger equation

» Evolution of a single quantum particle is governed by the
time-dependent Schradinger equation (TDSE)
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» Describes a field v (x, t) rather than a trajectory = ()

» Takes the form of a heat equation with sources/sinks but

In iImaqinary time:
imaginary 9 2 e
o(it)  2m ox? B




Wavefunction

» tp(x,t) is complex-valued and represents the
“nrobability amplitude” of a particle in space and time

» The conventional probability distribution ~ |v (=, t)|?
must be (af all times) normalizable:
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» Despite the probabilistic interpretation, the evolution of
the wavefunction is completely deterministic



Time evolution

. TDSE is a PDE of the form ih%zp(:v, b = Ho(at)

Has a formal soluti ! iltoni
> Has a formal solution gquantum Hamiltonian
() = e” 2= (g 1)) = U (ta, 1)y (@, 1)
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» Evolution is unitary evolufion operator
Ul =00 =1
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and hence time-reversible and norm-preserving



Energy eigenstates

» Analogue of classical “normal modes” (Fourier
transformed in time) are the enerqy eigenstates

» Substitution of ¢ (z,¢) = ¥ (x)e *FY" into
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vields the time-independent Schradinger equation

Bp(e) = —5—dlh(a) + V(2)ve(



Energy eigenstates

» Rewrite as Vg (z) = 2}1_21 V(z) — E|¢Yg(x)
» Reminiscent of the Poisson equation (cf. V24 = p), but

with a complicated source term:
» sign of V' (x) — E (the curvature) is spatially varying

» proportional to the wavefunction itself (which amounts
to an additional self-consistency condition)



Energy eigenstates
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Energy eigenstates
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Energy eigenstates

» The eigenfunctions must be solved in conjunction with
appropriate boundary conditions and/or asymptofic
behaviour; e.g.,

V)| < oo requires that ©» — 0 wherever V — o

» “Quantization” arises when only discrete values of £
lead to normalizable solutions

» Spectrum of eigenergies is generally discrete when the
particle is contained and continuous otherwise



Spectral decomposition

» Energy eigenstates {¢n (<)} form a complete basis

» Orthonormal with respect to overlaps (L2 inner products)
<§bn‘§bn’> — /d:l? gbn(z)*¢n’ (37) — 571 n’
Z ¢n (QZ — 4 )

» Any valid wave function can be expanded in this basis




Spectral decomposition

» Snapshot af time ¢ = 0:
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» Characterized by components along each basis function

e = (Gult(t = 0)) = / 0z ¢ (2) (2, 0)



Spectral decomposition

» Since, Ho,, = E,,¢,, the complete fime evolution
entfers as an additional set of phase factors

O(a,t) = e MY (@)

= e, (a)

» Introducing an upper cutoff to the summation discards

physics on time scales shorter than np< D

b cutoft




