Wave motion and spectral methods

Phys 750 Lecture I 3

Wave equation

- Wave motion is described by a partial differential equation in time and position
- For example: vibrations on a generic string described by a displacement field $u(x, t)$ evolving according to

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}+R \frac{\partial u}{\partial t}=T \frac{\partial^{2} u}{\partial x^{2}}-\kappa \frac{\partial^{4} u}{\partial x^{4}}+\cdots
$$

$R=$ loss coefficient
$T=$ line tension
$\kappa=$ nonlinear correction

Wave equation

- In the limit of small amplitudes, weak spatial modulation, and slow vibrations, the PDE is linear:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

- The wave velocity $c=\sqrt{T / \rho}$ is a characteristic speed related to the string's tension and mass per unit length
- Advection factoring:

$$
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u(x, t)=0
$$

Wave equation

- For an infinite string, any right- or left-travelling wave is a solution

- Lossless propagation
- Since the PDE is linear, all linear superpositions of solutions are also solutions:

$$
u(x, t)=a F(x \pm c t)+b G(x \pm c t)+\cdots
$$

Space-time mesh

- Naïve approach is to apply usual discretization techniques
- PDE requires a double mesh: $u_{i}^{(n)}=u(i \Delta x, n \Delta t)$
- Numerical estimates of the time and space derivatives

$$
\frac{u_{i}^{(n+1)}+u_{i}^{(n-1)}-2 u_{i}^{(n)}}{(\Delta t)^{2}} \approx c^{2}\left[\frac{u_{i+1}^{(n)}+u_{i-1}^{(n)}-2 u_{i}^{(n)}}{(\Delta x)^{2}}\right]
$$

lead to a recurrence relation

$$
u_{i}^{(n+1)}=2\left(1-s^{2}\right) u_{i}^{(n)}-u_{i}^{(n-1)}+s^{2}\left(u_{i+1}^{(n)}+u_{i-1}^{(n)}\right)
$$

with $s=c \Delta t / \Delta x \longleftarrow$ controls the stability of the recursion

Space-time mesh

- How we assign the current field from its values at previous time steps - e.g.,

$$
u_{i}^{(n+1)}=2\left(1-s^{2}\right) u_{i}^{(n)}-u_{i}^{(n-1)}+s^{2}\left(u_{i+1}^{(n)}+u_{i-1}^{(n)}\right)
$$

- is represented by a stencil: $\quad{ }_{i-1}^{i+1}$

Reflections

- All finite systems have a boundary, where the wave is contained by reflection
- A fixed end leads to reversal of motion and a π phase shift
- Finite differences are troublesome there

Reflections

- Single reflection event leads to the superposed solution

$$
\begin{aligned}
u(x, t)=F & (x-c t) \\
& -F(2 L-x-c t)
\end{aligned}
$$

- With the understanding that

$$
u(x, t)=0 \text { for } x>L
$$

Reflections

- String segment undergoes an infinite number of reflections:

$$
\begin{aligned}
u(x, t)=\sum_{n=-\infty}^{\infty}[& F(2 n L+x-c t) \\
& \quad-F(2 n L-x-c t)]
\end{aligned}
$$

- Vanishes at $x=0$ and $x=L$
- Periodic extension of the envelope function

Reflections

- A wave contained in a finite interval has a stable solution consisting of all multiply-reflected contributions

- Constructive parts: $u(x, t) \sim F(x-c t)-F(-x+c t)$

Normal modes

- Suppose that the wave is confined to $x \in[0, L]$
- Barring pathological examples, the periodic extension of F has a discrete Fourier representation

$$
F(x)=\sum_{n=-\infty}^{\infty} F_{n} e^{i n \pi x / L}
$$

- The components F_{n} are arbitrary except that the resulting envelope function must be real ($F_{n}^{*}=F_{-n}$)

Normal modes

- Waves in motion have the form

$$
F(\pm x-c t)=\sum_{n=-\infty}^{\infty} F_{n} e^{ \pm i k_{n} x} e^{-i \omega_{n} t}
$$

- Behaviour of each mode n is determined by a characteristic wave-vector and angular frequency

$$
\begin{gathered}
k_{n}=\frac{n \pi}{L}, \omega_{n}=c k_{n} \\
\rho \frac{\partial^{2} u}{\partial t^{2}}=T \frac{\partial^{2} u}{\partial x^{2}} \rightarrow-\rho \omega_{n}^{2} u=-T k_{n}^{2} u \rightarrow \omega_{n}=(T / \rho)^{1 / 2} k_{n}=c k_{n}
\end{gathered}
$$

Normal modes

- Solution:

$$
u(x, t)=F(x-c t)-F(-x-c t)=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x \cos \omega_{n} t
$$

- Boundary conditions are automatically satisfied for all time
- Each mode is orthogonal to the others, and there $\quad x=0$ is no energy transfer between them ($\dot{a}_{n}=0$)

$u(0, t)=u(L, t)=0$

Normal modes

- From the initial conditions $u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x$ determine components by overlap with each mode:

$$
a_{n}=\frac{1}{L} \int_{0}^{L} d x u(x, 0) \sin k_{n} x
$$

- Complete behaviour at all subsequent times:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin \frac{\pi n x}{L} \cos \frac{\pi n c t}{L}
$$

Truncation errors

- Make tractable by putting a bound on the mode sums:

$$
\sum_{n=1}^{\infty} \rightarrow \sum_{n=1}^{n_{c}}
$$

- Spatial resolution $\Delta x=2 L / n_{c}$ is set by the wavelength $\lambda=2 \pi / k_{n}=2 L / n$ of the highest mode
- Discarded modes should have negligible power

$$
\begin{aligned}
E & =\frac{1}{2} \int d x\left[\left(\frac{\partial u}{\partial t}\right)^{2}+c^{2}\left(\frac{\partial u}{\partial x}\right)^{2}\right] \\
& =\sum_{n=1}^{\infty} \omega_{n}\left|a_{n}\right|^{2} \sim \sum_{n=1}^{n_{c}} n^{2}\left|a_{n}\right|^{2}+O\left(\left(n_{c}+1\right)\left|a_{n_{c}+1}\right|\right)^{2}
\end{aligned}
$$

Spectral method

- Alternative strategy for more general PDEs that support wavelike motion, e.g.,

$$
\frac{\partial^{2} u}{\partial t^{2}}+b \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+f \frac{\partial^{4} u}{\partial x^{4}}+\cdots
$$

- We can start from the ansatz $u(x, t)=u_{n}(x) e^{i \omega_{n} t-\gamma t}$
- Solve the space-only conventional ODE for each mode:

$$
\begin{aligned}
& \left(i \omega_{n}-\gamma\right)^{2} u_{n}(x)+b\left(i \omega_{n}-\gamma\right) u_{n}(x) \\
& \quad=c^{2} u_{n}^{\prime \prime}(x)+f u_{n}^{\prime \prime \prime \prime}(x)+\cdots
\end{aligned}
$$

Spectral method

- View as a (real-valued, $\gamma=b / 2$) eigenequation

$$
\left(c^{2} \frac{\partial^{2}}{\partial x^{2}}+f \frac{\partial^{4}}{\partial x^{4}}\right) u_{n}(x)=\left(-\omega_{n}^{2}+\frac{1}{4} b^{2}\right) u_{n}(x)
$$

- Imposition of boundary conditions leads to a discrete eigenspectrum, corresponding to the normal modes

