Wave motion and
spectral methods

Phys 750 Lecture |3



Wave equation

» Wave motion is described by a partial differential
equation in fime and position

» For example: vibrations on a generic string described by
a displacement field «(z, t) evolving according to
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Wave equation

» |n the limit of small amplitudes, weak spatial
modulation, and slow vibrations, the PDE is linear:
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» The wave velocity ¢ = \/7'/p is a characteristic speed
related fo the string’s tension and mass per unit length

» Advection factoring:
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Wave equation
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» For an infinite string, any right- or
left-travelling wave is a solution

» Lossless propagation

F(x 4+ ct)
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» Since the PDE is linear, all linear
superpositions of solutions are also
solutions: ) .

u(z,t) = aF(xz £ ct) + bG(x £ ct)




Space-time mesh

» Naive approach is to apply usual discretization techniques
» PDE requires a double mesh: v\ = w(iAz, nAt)
» Numerical estimates of the time and space derivatives
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with(s = cAt/Az)«— controls the stability of the recursion




Space-time mesh

» How we assign the current field from its values af
previous time steps — e.qg.,
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Reflections

» All finite systems have a

Pz = ct) boundary, where the
AT wave is contained by
reflection
\:\/\ H » A fixed end leads to
reversal of motion and
< a 7 phase shift

—F(—z —c(t —t)) » Finite differences are

troublesome there



Reflections

ct = 2L — x

» Single reflection event leads fo
the superposed solution
u(xz,t) = F(x — ct)
— F(2L — x — ct)

» With the understanding that
u(z,t) =0 for > L



Reflections

ct

» String segment undergoes an

ct= AL infinite number of reflections:
ct =2L +x I o0

¢t =2L -2 u(xz,t) = Z F(2nL + 2 — ct)
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ot =20 3 | » Periodic extension of the

envelope function



Reflections

» A wave contained in a finite interval has a stable solution
consisting of all multiply-reflected contributions
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» Constructive parts: u(z,t) ~ F(x — ct) — F(—x + ct)




Normal modes

» Suppose that the wave is confined to = < [0, L]

» Barring pathological examples, the periodic extension of
F' has a discrete Fourier representation

F(QE): f: Fneinwx/L

» The components £, are arbitrary except that the
resulting envelope function must be real ( F* = F_,,}



Normal modes

» Waves in motion have the form
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» Behaviour of each mode » is determined by a
characteristic wave-vector and angular frequency
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Normal modes

» Solution:

O

u(z,t) = F(ox —ct) — F(—x — ct) = Z Ay, SiN K, & COS Wit
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» Boundary conditions are
automatically satisfied
for all fime

» Each mode is orthogonal
to the others, and there SN ,
is no energy transfer NN
beiween Them (dn — O) U(O, t) — U(La t) =0




Normal modes
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» From the initial conditions u(z,0) = ) ~ a, sink,
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determine components by overlap with each mode:
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Ay = —/ dx u(x,0)sin k,x
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» Complete behaviour af all subsequent times:
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Truncation errors

» Make tractable by putting a bound on the mode sums:
DD
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» Spatial resolution Az = 2L /n.. is set by the
wavelength A = 27 /k,, = 2L/n of the highest mode

» Discarded modes should have negligible power
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Speciral method

» Alternative strategy for more general PDEs that support
wavelike motion, e.g.,
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» We can start from the ansatz w(x, ) = w, (x)e?nt=7"

» Solve the space-only conventional ODE for each mode:
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Speciral method

» View as a (real-valued, v = b/2) eigenequation
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» Imposition of boundary conditions leads to a discrete
eigenspectrum, corresponding to the normal modes




