
Wave motion and  
spectral methods

Phys 750 Lecture 13



Wave equation
‣ Wave motion is described by a partial differential 

equation in time and position 

‣ For example: vibrations on a generic string described by 
a displacement field              evolving according to  u(x, t)
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Wave equation
‣ In the limit of small amplitudes, weak spatial 

modulation, and slow vibrations, the PDE is linear:  
 

‣ The wave velocity                      is a characteristic speed 
related to the string’s tension and mass per unit length 

‣ Advection factoring:
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Wave equation

‣ For an infinite string, any right- or 
left-travelling wave is a solution 

‣ Lossless propagation 

‣ Since the PDE is linear, all linear 
superpositions of solutions are also 
solutions:
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Space-time mesh
‣ Naïve approach is to apply usual discretization techniques 

‣ PDE requires a double mesh: 

‣ Numerical estimates of the time and space derivatives  
 
 
 
lead to a recurrence relation 
 
 
with
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Space-time mesh
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‣ How we assign the current field from its values at 
previous time steps — e.g.,  
 
 
— is represented by a stencil:
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Reflections
‣ All finite systems have a 

boundary, where the 
wave is contained by 
reflection 

‣ A fixed end leads to 
reversal of motion and  
a      phase shift 

‣ Finite differences are 
troublesome there 
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Reflections
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‣ Single reflection event leads to 
the superposed solution 

‣ With the understanding that  
                     foru(x, t) = 0 x > L
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Reflections
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‣ String segment undergoes an 
infinite number of reflections: 

‣ Vanishes at              and  

‣ Periodic extension of the 
envelope function
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Reflections
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‣ A wave contained in a finite interval has a stable solution 
consisting of all multiply-reflected contributions  
 
 
 
 
 

‣ Constructive parts: u(x, t) ⇥ F (x� ct)� F (�x + ct)



Normal modes
‣ Suppose that the wave is confined to  

‣ Barring pathological examples, the periodic extension of   
     has a discrete Fourier representation  
 

‣ The components       are arbitrary except that the 
resulting envelope function must be real (                   )
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Normal modes
‣ Waves in motion have the form 

‣ Behaviour of each mode      is determined by a 
characteristic wave-vector and angular frequency
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Normal modes

x = 0 x = L

u(0, t) = u(L, t) = 0

‣ Solution: 

‣ Boundary conditions are 
automatically satisfied 
for all time 

‣ Each mode is orthogonal 
to the others, and there 
is no energy transfer 
between them (             )ȧn = 0
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Normal modes
‣ From the initial conditions  
 
determine components by overlap with each mode:  
 

‣ Complete behaviour at all subsequent times:
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Truncation errors
‣ Make tractable by putting a bound on the mode sums:  
 

‣ Spatial resolution                          is set by the 
wavelength                                     of the highest mode 

‣ Discarded modes should have negligible power  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Spectral method
‣ Alternative strategy for more general PDEs that support 

wavelike motion, e.g.,  
 

‣ We can start from the ansatz 

‣ Solve the space-only conventional ODE for each mode:
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Spectral method

‣ View as a (real-valued,               ) eigenequation  
 
 

‣ Imposition of boundary conditions leads to a discrete 
eigenspectrum, corresponding to the normal modes
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