
N-body simulations
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N-body simulations
‣ Forward integration in time of strongly coupled classical 

particles or (rigid-body composite objects) 

‣ Very general class of second-order ODE:  
 
 

‣ Referred to as N-body simulation or molecular dynamics 
in various scientific communities
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Broad applicability
‣ Useful in many contexts and over vastly different scales

“classical water”virusgalaxy formation



N-body simulations
‣ Classical systems of many particles, dissipationless and 

interacting via central forces, have a Hamiltonian of the 
form 

‣ Momentum variables                   are conjugate to the 
position variables      (         –dimensional phase space) 

‣ Interactions determined by the pair potential
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N-body simulations
‣ The set of second-order differential equations maps to a 

set of coupled first-order equations:
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N-body simulations
‣ Special considerations: 

‣ For long-range forces all particle pairs interact strongly 
with one another — at best,                       scaling 

‣ Repulsive interactions require a “container” (via walls 
or periodic boundary conditions) 

‣ Time step must be adjusted such that the length scale           
        can resolve the spatial structure of  
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Finite simulation cell
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‣ Typical setup: finite           
periodic cell serves as a 
representative sample of space 

‣ How to judge distance for the 
purpose of computing long 
range forces?
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Finite simulation cell

‣ Periodicity is equivalent 
to tiling all space with 
copies of the same cell 

‣ Forces arise from 
interactions with each 
of an infinite number of 
image particles



Finite simulation cell

r

closest-image 
distance

�L < r < L

intra-cell separation
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‣ Approximating the infinite summation in 1D:



Finite simulation cell
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‣ Summation has an 
exact form for EM-
like and gravity-like 
interactions
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Finite simulation cell
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‣ closest-image 
approximation 
increasingly good as 
interactions become 
short-ranged; e.g.,



Finite simulation cell
‣ Example distance measure 

in a 3D orthogonal cell
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Lennard-Jones Potential

‣ Model of Van der Waal’s 
attraction between neutral 
atoms plus an inner core 
repulsion 

‣ Equilibrium point   
separates the attractive and 
repulsive regionsU(r) = 4�
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Choice of Time Step
U(r)
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two particles at rest at 
separation distance 1.7



Choice of Time Step
U(r)
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particle penetrated well beyond 
the classical turning point!

artificial 
energy 
gain



Adaptive Time Step
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‣ Allow time step to vary 
dynamically within the 
simulation 

‣ Check convergence by 
comparing evolution of 
two otherwise identical 
copies of the system



Range Truncation
‣ If interactions are finite-range, there are only a small 

number of forces acting on each particle (unless the 
particles have coalesced) 

‣ Algorithm now scales as  
 
 

‣ Can we impose a cutoff?
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Range Truncation
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‣ E.g., Lennard-Jones tail is very weak beyond rc � 2� – 3�



Range Truncation
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‣ Care must be taken not to introduce unphysical forces

discontinuous, 
impulsive force
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Range Truncation
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Ewald summation
‣ Naive truncation is not possible in the case of truly long-

ranged interactions 

‣ Ewald summation is a useful Fourier space trick 

‣ E.g., consider non-self electrostatic interactions between 
particles in all image cells:
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Ewald summation
‣ Exact rewriting in terms of a background constant, a 

direct space sum, and a dual space sum:
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Ewald summation
‣ Safe to truncate the sum in       at separations above 

‣ Order        sum over particle indices in       can be 
evaluated as two order       sums:
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Barnes-Hut tree

‣ dynamic data structure: recursive 
subdivision of space into “quads” 
containing at most one particle 

‣ The centre-of-mass position is 
calculated at each tree level and 
passed up the linked-list hierarchy



Barnes-Hut tree

d l
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‣ Assume that a particle cluster 
sufficiently far away can be 
represented by a single 
representative particle at the centre-
of-mass (neglects tidal forces) 

‣ Distance judged by the size of the 
“opening angle” 

‣ Scales as N log N



Parallel Computation
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‣ Simulate on many CPUs 
simultaneously 

‣ Each machine updates the 
particles in a sub-region of 
the full space 

‣ Position information 
passed as “messages” 
passed around the ring 



Parallel Computation
‣ Because of message-passing overhead, the algorithm 

scales somewhat worse than                                  : 

• Each CPU is numbered cyclically n = 0, 1, . . . , NCPU � 1

• Loop for each time step:

– Node n computes forces exerted by its own particles
– Repeat n� 1 times:

⇥ Node n sends positions to node n+1 and receives positions from
node n� 1

⇥ Uses received positions to compute forces on its own particles
– Each node updates its own positions and velocities

N(N � 1)/2NCPU



Neutral territory methods
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traditional half-shell neutral territory

message passing 
overhead ⇠ 1
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