Physics 750: Exercise 9
Thursday, October 5, 2017

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/

$ curl $WEBPATH/courses/fall2017/phys750/src/exercise9.tgz -0
$ tar xzf exercise9.tgz

$ cd exercise9

2. As an example of how to proceed, I have included a program solar.cpp, which simulates three small
“planets” orbiting a larger “star” in an artificial (and unstable) solar system. All four bodies interact via
the graviational force (with G = 1) and are confined by their initial conditions to the x-y plane. From the
exercise9 directory, invoking

$ make
g++ -0 solar_openGL solar.cpp -02 -ansi -pedantic -Wall -lglut -DUSE_OPENGL
g++ -0 solar solar.cpp -02 -ansi -pedantic -Wall

will build both graphical (solar_openGL) and non-graphical (solar) versions of the program. A single
source file solar. cpp contains OpenGL code that is selectively activated with the USE_OPENGL macro.
Running . /solar_openGL opens a new window and animates the planetary motion. The window displays
everything inside the coordinate square with vertices (—1,—1) and (1, 1). You can adjust the speed of the
animation by recompiling with different values of const int delay.

The nongraphical version writes the four trajectories to files in a 7-column format. (N.B. The << operator
is overloaded in the particle class definition, so cout << gas[n] is a legal way to output information
about the nth particle.) Try the following:

$ ./solar

$ s trx

trajectory0.dat trajectoryl.dat trajectory2.dat trajectory3.dat
$ gnuplot view.gp

3. We now want to investigate the behaviour of a two-dimensional gas of particles interacting via Van der
Waals forces. Let’s set up a separate program to do that.

$ cp solar.cpp LennardJones.cpp
$ pico makefile
[edit makefile accordingly]

The energy of the gas has the form
1
E = Z Emvi2 + Z U(rij),
i i<j

where the indices i, j range over the particle number, r;; is the distance between two particles, and U (r)
is given by the famous Lennard-Jones potential:
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The force between a pair of particles,

F=-VU(r) = ?[2(2)12 B (2)6]



vanishes at ro = 2!/%0. Particles closer than rg repel each other and those farther apart attract. Implement
this new force law in your code using the values € = 1, o = 0.21. You may have to adjust your time step.

Unlike the solar system, the gas will need to be contained. Restrict the particles to a 2 X 2 box by
implementing periodic boundary conditions for the coordinates -1 < x < 1 and -1 < y < 1. You will
have to modify the concept of distance accordingly.

Next, initialize the gas by arranging 100 particles at rest in a 10 X 10 square grid with uniform spacing:

(-0.9,0.9) (-0.7,09) (-05,09) --- (0.90.9)
(-0.9,0.7) (-0.7,0.7)  (-0.5,0.7) (0.9,0.7)
(—0.9,.—0.9) (-0.7,-0.9) (-0.5,-0.9) --- (0.9, .—0.9)

Introduce small random deviations (of order 0.01) in the positions. You should use the mersenne twistor
algorithm from C++11’s random library

#include <random>
using std::mt19937;
using std::uniform_real_distribution;

#include <chrono>
using std::chrono::high_resolution_clock;

#include <functional>
using std::bind;

static mt19937 rng; // mersenne twistor random number generator
// create a function that generates a random number in [-1,1)
static auto rnd = bind(uniform_real_distribution<double>(-1,1),rng);

to place particles at vec2 (x+0.01*rnd(),y+0.01xrnd()).

With these initial conditions, the system is actually in the solid phase. But the initial square lattice pattern
is not the ground state; it is merely meta-stable. The slight random deviations you added allow the atoms
to settle into into a new crystalline arrangement. Describe that arrangment.

. Keep track of the total elapsed time ¢ and have the program exit when ¢ > 20. Use the exit (0) function
call in the C standard library:

#include <cstdlib>
using std::exit;

Generate a histogram of all the pair distances in the time window 10 < ¢ < 20. This quantity is called the
radial distribution function. Plot it and discuss its features. Explain the geometric significance of the first
few peaks.

. Initialize the particles in their 10 x 10 grid as before, but reduce the atomic “size” to o = 0.1 (in
effect creating a more dilute gas) and add small deviations (of order 4) to the initial particle velocity, e.g.,
vec2(4.0xrnd(),4.0xrnd() ). Measure a velocity histogram in each of the time intervals 0 < # < 1/8,
1/4<t<1/2,1 <t<2,4<t<6,and 16 <t < 20. Compare these with the two-dimensional Maxwell-

Boltzmann distribution,
2

Estimate the time scale for the system to thermalize. Can you perform a fit to extract the temperature k7?7



6.
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What does the radial distribution function look like for the dilute gas? Plot it alongside the analytical
expression for a uniform, non-interacting gas. How do the two plots differ and what does that reveal?

. For each of the 100 particles in the gas phase, add a partner of mass 3.0 randomly positioned a distance

d = 0.05 away with the same initial velocity. Use the method of Lagrange multipliers to enforce the
distance constraint at every time step going forward.

For example, suppose that particle i and j form a bonded pair. The corresponding Lagrange multiplier A;;
appears in the equations of motion and works to keep the particles locked together at a fixed distance d.
Since we view A;; as constant over each time step, we can add its contribution to the updates as follows:
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Here, the tilde quantities denote the new positions computed (with velocity Verlet) in the absence of
constraint forces. The requirement that |r§"+1) - rﬁ."“)l = d yields a quadratic equation in A;; whose
physical root is

1 1\ /A(6F - 6r)% + |67 |%(d? — |6F|?) — 6F - 61
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The vectors r = rlg") - r](.") and 67 = f;"H) - ?](."H)

meet at an angle 6.

If you choose to implement the inner product version of the expression above, you may find it convenient
to call the dot function provided in vec2.hpp. Also, if you compile with -DUSE_CONSTRAINT, the
display function will know to draw a line between the two atoms in each molecule. This should
work correctly provided that you obey the convention that gas[0] and gas[1] are bonded, gas[2] and

gas[3] are bonded, etc.

. For the diatomic gas, compute the following three energies averaged over all molecules and over long

times: (i) the translational energy of the molecular centres of mass, (ii) the rotational energy, and (iii)
kinetic energy of the atoms considered individually. How do the values compare? Are they consistent
with the equipartition theorem?



