
Physics 750: Exercise 8
Tuesday, September 26, 2017

This exercise concerns the Lorenz attractor, a famous set of first-order differential equations that was
originally proposed in 1963 to model fluid convection:

dx
dt
= σ(y − x)

dy
dt
= x(ρ − z) − z

dz
dt
= xy − βz

The model is usually studied with σ = 10 and β = 8/3 fixed and ρ treated as a free parameter. For ρ < 470/19 �
24.74, the system is dissipative and the initial transient dies out. As ρ passes above 470/19, the system becomes
chaotic. The chaotic behaviour takes place on a butterfly-shaped attractor. There are many other values, e.g.,
ρ = 99.96, that produce interesting closed orbits.

Remember that in the chaotic regime, the dynamics of the system are extremely sensitive to the initial condi-
tions. Even infinitesimal perturbations grow expenentially in time, making the long-time dynamics impossible
to predict. This happens even though the systems is deterministic (not random). The Lyapunov exponent char-
acterizes the rate of separation of infinitesimally close trajectories. Roughly speaking, for a vector norm d, we
have d(r1(t), r2(t)) ≈ eλtd(r1(0), r2(0)), where d(r1(0), r2(0)) < ε . Strictly speaking, the rate of separation
is governed by a set of local eigenvectors and a spectrum of Lyapunov exponents—one for each dimension of
the phase space. See Phys. Rev. A 29, 2928 (1984).

The equations of motion can be expressed as

dr (t)
dt
= F (r (t)),

where r = (x, y, z) is the coordinate vector. In this lab, the numerical integration is carried out via 2nd order
Runge-Kutta

r i+1 = r i + c2

c1 =
1
2
F (r i)∆t

c2 = F (r i + c1)∆t

and 4th order Runge-Kutta

r i+1 = r i +
1
6

(c1 + 2c2 + 2c3 + c4)

c1 = F (r i)∆t

c2 = F (r i +
c1
2

)∆t

c3 = F (r i +
c2
2

)∆t

c4 = F (r i + c3)∆t

1. Download the Lab 4 instructions and source code from the class website. You can either do this from a
web browser or from the terminal by way of the get_files script (described in Lab 0).

http://link.aps.org/doi/10.1103/PhysRevA.29.2928


$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise8.tgz -O
$ tar xzf exercise8.tgz
$ cd exercise78
$ make
g++ -c chaos.cpp -O2
g++ -c viewer.cpp -O2
g++ -o chaos chaos.o viewer.o -lglut

2. The make command generates an executable chaos, which you should run. Right-clicking on the graphics
window will bring up a menu from which you can select the action that you want to perform. Moving the
mouse while the left button is depressed will allow you to rotate and zoom the image.

3. The code is broken into several files. viewer.cpp contains main and all of the functions associated with
generating the graphics environment. chaos.cpp contains all of the functions that initialize and update
the dynamical system. trajectory.hpp and vec3.hpp contain class definitions.
Most of the work is done by RungaKutta2nd and RungaKutta4th, the time-step integrators provided.
Trajectories evolve using the following class method call:

trajectory T(x0,y0,z0);
T.evolve(Lorenz,RungaKutta4th,dt);

You will see that there are in fact seven trajectories running simultaneously. These are stored in a vector
variable named bundle. They correspond to one initial trajectory and ±ε perturbations in each of the
three orthogonal directions.

4. To complete this lab, you shouldn’t have to make changes to any of the files except chaos.cpp. Almost ev-
erything can be done by adding to the functions that initialize and update the system, initialize_bundle
and update_bundle.

5. Experiment with the two integrators and different values of the time step and different values of ρ. Try to
get a sense for what size of ∆t is appropriate. What kinds of behaviour do you find?

6. Consider the case ∆t = 0.01, ρ = 28.
Modify the code so that after 100 time steps the deviations of the six perturbed trajectories are output every
10th time step to a filediff.dat. You can use the constructionofstream<< distance(bundle[0],bundle[n]).
Have the program exit when the number of time steps exceeds some large value. Use the exit(0) function
call in the C standard library:

#include <cstdlib>
using std::exit;

You should be able to estimate the Lyapunov exponent:

$ head -n 5 diff.dat
0.0328598 0.0334548 0.0260056 0.0263768 0.00482405 0.00482317
0.0365318 0.0372045 0.0289109 0.0293311 0.00411882 0.00411718
0.0327259 0.0334689 0.0258911 0.0263555 0.00424087 0.0042419
0.0282033 0.0287112 0.0223223 0.0226386 0.00528584 0.00528499
0.0366812 0.0371981 0.0290411 0.0293632 0.00521532 0.00520977

$ gnuplot
gnuplot> plot "diff.dat" using 0:(($1+$2+$3+$4+$5+$6)/6) with lines
gnuplot> set logscale y
gnuplot> dt = 0.01
gnuplot> eps = 0.01
gnuplot> replot eps*exp(1.2*(x+55)*dt)



7. For the case ∆t = 0.01, ρ = 22, show that the Lyapunov exponent is negative.

8. Consider the case ∆t = 0.001, ρ = 160.
Modify the code so that after 100 time steps the position of the non-perturbed trajectory is output every
10th time step to a file traj.dat. You can use the construction ofstream << bundle[0].
Convince yourself that the period of 115.3 × ∆t = 0.1153 can be identified as follows:

$ head -n 5 traj.dat
2.6970908 9.7907308 0.92401019
3.508246 12.729297 1.242895
4.5620529 16.534085 1.7902344
5.9289753 21.442572 2.7218089
7.6975195 27.73536 4.2966881

$ gnuplot
gnuplot> plot "traj.dat" using 0:1 with lines # plot x vs. time step

# behaviour is regular after
# initial tranient has dies out

gnuplot> plot "traj.dat" using 1:0 with lines, 353, 465 # roughly identify period
gnuplot> print 465-353
111
gnuplot> plot "traj.dat" using (sin(2*pi*$0/115.3)):1 with lines # data collapse

9. Verify that period doubling is the route to chaos as ρ is decreased.

ρ period
160 T = 0.1153
155 T = 0.1172
150 T = 0.1192
149 T = 0.1197
148 2T = 0.1201 T = 0.0605
144 aperiodic

**10. If you are particularly ambitious, you could try to estimate the driving period as a function of ρ and then
create a Poincaré section plot of x versus ρ.

$ cat > periods.dat
160 115.3
155 117.2
150 119.2
149 119.7
148 120.1
[ctrl-d]
$ gnuplot
gnuplot> f(x) = f0 + f1*x + f2*x**2
gnuplot> fit f(x) "periods.dat" via f0,f1,f2
gnuplot> plot "periods.dat", f(x)
gnuplot> print f(147.5)
120.323668111517

For example, at ρ = 147.5 you would plot the value of x that appears every 120.3 times steps. The
windows of period 2, 4, 8, . . . decrease in width by the same factor—the Feigenbaum δ. Can you estimate
its value?


