
Physics 750: Exercise 7
Thursday, September 20, 2017

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise7.tgz -O
$ tar xzf exercise7.tgz
$ cd exercise7

2. The make command will create an executable relax, which implements the Jacobi and Gauss-Seidel
relaxation algorithms for the two-dimensional Laplace equation (∇2φ = 0). The program reads the
initial conditions from a file (several inputn.dat files are provided) and outputs a sequence of files
outputabcd.dat containing the φ(x, y) values after abcd sweeps. It also outputs a file movie.gp that
can be invoked to view the results as a gnuplot animation.

$./relax
Usage: relax jacobi|gauss filename
$./relax jacobi intput1.dat
Error : 0.3675
Error : 0.155625
Error : 0.107188
...
Error : 1.29241e-05
Error : 1.01436e-05
Error : 9.23734e-06
Converged in 58 passes
$ gnuplot movie.gp

3. The relax program accepts input that is formatted in a particular way. Observe that the input files consist
of both numerical data and an array of symbols (#X0.). Try to reverse-engineer the file format and
generate input files of your own.

4. In this implementation, the x-y plane is discretized into a uniform grid of spacing ∆x = ∆y. The grid
cells are updated until they all locally satisfy the self-consistency condition

1
(∆x)2

[
φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j

]
= 0.

The Jacobi and Gauss-Seidel methods differ only in whether each φi, j is updated using new or old values
of its neighbours. Implement the checkerboard update scheme mentioned in class. Which of these three
methods converges in the fewest steps?

5. Modify the program so that it can also solve the Poisson equation, ∇2φ = ρ. I suggest that you allow for a
source term ρ that consists of individual monopoles of unit charge: ρ(x, y) =

∑
k qkδ(x − xk)δ(y − yk)

with qk = ±1. At this level of approximation, δ(x) ≈ 1
∆x θ(1

2∆x − x)θ(x + 1
2∆x). Thus, we have

1
(∆x)2

[
φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j

]
=




+ 1
(∆x)2 positive charge in box i, j,
− 1

(∆x)2 negative charge in box i, j,
0 otherwise.

Extend the file format so that the symbols + and - denote a single positive or negative charge. If you are
successful, your program should now be able to interpret the output3.dat file. Using output4.dat as
a template, set up lone-charge, electric-dipole, and parallel-plate-capacitor examples.

6. After each sweep, the program writes φi, j to a file in a tabular form appropriate for gnuplot’s
splot "..." matrix call. Modify the program so that you can choose instead to output the electric
field (potential gradient) E = ∇φ in a four-column style: x y ∂φ/∂x ∂φ/∂y. (Note that your definition of
the gradient will have to change if the cell is at the grid edge or next to a dead cell.) The movie.gp file
should be changed to use a vector field plotting stye:

plot "output0000.dat" using 1:2:3:4 with vectors

[Since the scale of the gradients is set by ∆x, you might want to put dx=0.1 (or some other appropriate
value) in the preamble and write using 1:2:($3/dx):($4/dx) instead.] Go back and view the field
lines for your examples from question 4. Make sure that they flow smoothly, except at the charge locations
where they should diverge.

7. Update each cell as a weighted average of its “new” and “old” values.

φi, j =
α

4
[
φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − (∆x)2ρi, j︸ ︷︷ ︸

new

]
+ (1 − α) φi, j︸︷︷︸

old

.

Experiment with the over- (1 < α < 2) and under-relaxation (0 < α < 1) regimes. What is the optimum
value of α? Is it the same for all initial conditions?

