
Physics 750: Exercise 6
Tuesday, September 14, 2017

1. Use the curl command to download from the class website everything you’ll need for the lab.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise6.tgz -O
$ tar xzf exercise6.tgz
$ cd exercise6

2. Consider a satellite orbiting the earth with period P whose distances of closest and farthest approach are
r1 and r2. The satellite’s path traces out an ellipse,

r (θ) =
a(1 − e2)

1 + e cos(θ)
= a(1 − e cos E).

The formula above assumes polar coordinates (r, θ) in the plane of the orbit with the earth centred on one
of the ellipse’s foci. The ratio

e =
r2 − r1
r1 + r2

=
r2 − r1

2a
defines the eccentricity of the orbit; a is the semi-major axis, and E is the so-called eccentric anomaly.
Kepler worked out the following procedure for determining the location of the satellite at time t, as
measured from the moment of closest approach:

• Define the mean anomaly M = 2πt/P.
• Determine the eccentric anomaly E by solving Kepler’s equation, M = E − e sin E.
• Compute the true anomaly θ from the equation

tan
θ

2
=

√
1 + e
1 − e

tan
E
2
.

Kepler’s equation is transcendental and has no closed-form solution. It has to be inverted numerically. In
the file orbit.cpp, solve Kepler’s equation by finding the root of the function f (E) = E − M − e sin E
via Newton-Raphson iteration:

En+1 := En −
f (En)
f ′(En)

= En −
En − M − e sin En

1 − e cos En
.

Use the initial guess E0 = 0 at time t = 0, and for each subsequent time step use the previous step’s
converged E value as the initial guess. Make sure that a minimum number of iterations are always
performed. The view2.gp script should give you the following plots.

3. Write a new program orbit_vel.cpp that functions identically to orbit.cpp from question 1 except
that it outputs five columns of data: time t, radius r , angle θ, radial velocity ṙ , and angular velocity θ̇. The
time derivatives ṙ and θ̇ should be approximated as symmetric finite difference. Some care must be taken
in computing θ̇ since θ is compact on [0, 2π].
In orbit.cpp, the closest- and farthest-approach values were set to r1 = Re + 500 km and r2 = Re +

3000 km, where Re is the radius of the earth. For orbit_vel.cpp, consider a more eccentric orbit with
r1 = Re + 1000 km and r2 = Re + 8500 km. Compose a gnuplot script view3.gp that plots the satellite’s
spatial trajectory, its radial velocity versus time, its angular velocity versus time, and its total speed versus
sin θ, assuming that the data is in a file ov.dat. (Arrange these as four plots in succession, separated
by a pause -1 command.) In the last plot, be sure to compute the speed as the magnitude of the vector
v = ṙ r̂ + r θ̇ θ̂.

$ make orbit_vel
$./orbit_vel > ov.dat
$ gnuplot -persist view3.gp

4. Recall that Newton’s method is an iterative scheme for finding the zeros of an arbitrary function f (x). It
involves making an initial guess x0 and then generating a sequence of improved estimates according to

xn+1 := xn − f (xn)/ f ′(xn). If we choose f (x) = x2 − a, then finding the zeros of f (x) is equivalent to
computing the square root of a. The correct recurrence relation is

xn+1 :=
1
2

(
xn +

a
xn

)
.

The program root.cpp implements the recurrence relation shown above, starting from x = 1. The loop
terminates when the next value in the sequence is sufficiently close to the old one.

$ make root
g++ -o root root.cpp -O2 -ansi -pedantic -Wall -lm
$./root
Returns the square root of the provided argument:
Usage: root # [--verbose]
./root 2
Newton’s method value: 1.414213562373095
C Math library value: 1.414213562373095
$./root 9
Newton’s method value: 3
C Math library value: 3
$./root 101010
Newton’s method value: 317.8207041713928
C Math library value: 317.8207041713928

In general, computing square roots via series expansion is much less reliable, but let’s give it a try. The
square root

√
a2 + b can be expanded in powers of b/4a2 as follows:√

a2 + b = a +
1
2

b
a
−

1
8

b2

a3 +
1
16

b3

a5 −
5

128
b4

a7 + · · ·

= a +
b

2a
+

∞∑
n=1

(−1)nCn
bn+1

(2a)2n+1

= a +
b

2a

(
1 +

∞∑
n=1

(−1)nCn
bn

(2a)2n

)
.

Here, (Cn) = (1, 2, 5, 14, 42, 132, 429, 1430, . . .) are the Catalan numbers. They are defined by

Cn =
1

n + 1

(
2n
n

)
=

(2n)!
n!(n + 1)!

and describe the number of ways a polygon with n + 2 sides can be cut into n triangles. For large values
of n, the factorials are too large to compute, so we should use the trick of computing each term from the
previous one. The ratio of two consecutive terms is

(−1)n+1Cn+1bn+1

(2a)2n+2
(2a)2n

(−1)nCnbn
= −

b(2n + 2)(2n + 1)
4a2(n + 1)(n + 2)

.

Write a program seriesroot.cpp that computes the truncated N-term series expansion for a given list
of N values. (In other words, argc can have any value greater than 3, and the program should loop over
all N assigned from argv[3], argv[4], . . . , argv[argc-1].) You should be able to generate the one-
through ten-term approximations to

√
2 =
√

12 + 1 and
√

3 =
√

22 − 1 as follows. The script view4.gp
illustrates the convergence rates for Heron’s method and three different series approximations to

√
3.

$ make seriesroot
g++ -o seriesroot seriesroot.cpp -O2 -ansi -pedantic -Wall -lm
$./seriesroot
Computes the N-term series expansion of sqrt(a^2+b):
Usage: seriesroot a b N1 [N2 N3 N4 ...]
$./seriesroot 1 1 $(seq 10)

1 1
2 1.5
3 1.375
4 1.4375
5 1.3984375
6 1.42578125
7 1.4052734375
8 1.42138671875
9 1.408294677734375

10 1.419204711914062
$./seriesroot 2 -1 $(seq 10)

1 2
2 1.75
3 1.734375
4 1.732421875
5 1.73211669921875
6 1.732063293457031
7 1.732053279876709
8 1.732051312923431
9 1.732050913386047

10 1.732050830149092
$ gnuplot -persist view4.gp

