Physics 750: Exercise 5
Tuesday, September 12, 2017

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/

$ curl $WEBPATH/courses/fall2017/phys750/src/exercise5.tgz -0
$ tar xzf exerciseb5.tgz

$ cd exercise5

$ make

g++ -0 integrator integrator.cpp -02 -1m

g++ -0 freefall freefall.cpp -02 -1lm

g++ -0 oscillator oscillator.cpp -02 -1m

g++ -0 pendula pendula.cpp -02 -1m

2. The program integrator computes the integral
32 Sr2(127% - 1) + 8x* + 272 + 1
I :f dx cos’(nx)xe® = e (127) + 87 dl
0 (1 +4x2)2

using the functions trapezoidIntegrator and SimpsonIntegrator. The exact value of the integral
is I = 9.1058789328730354374605603731577.

(a) Have a look at the integrand.

$ gnuplot
gnuplot> plot[0:2.5] x*xexp(X)*cos(pi*x)*x2

(b) Familiarize yourself with the source code for integrator. Observe that
double (&f) (double)
is the prototype for a function argument, where f is any function that that accepts a double and
returns a double. What role does the ampersand play here?

(c) Plot |Iyap — 1| and |Isjmp — I| versus 1/N on a log-log scale. Verify that the first scheme has error
O(N~?) and the second O(N~*). (Hint: try typing help logscale and help abs from within
gnuplot.)

(d) Change the integrand to cos?(zx)xe* log x. Why does the program fail?

(e) Devise a work around to the problem in part (d). See how close you can get to the exact value of
the integral, 5.4374112923165359648655111461763. See if you can achieve better accuracy by
changing the working type to Long double.

*(f) The trapezoid and Simpson’s rules are given by

b -
[avren ~ 2 G+ o
and
[T = 220 s v ar(S3) 4 s)

The first is based on a linear fit to the 1ntegrand evaluated at points a and b, and the second a quadratic
fit at points a, (a + b)/2, and b. The corresponding cubic fit leads to Boole’s rule, which is given by
the following ﬁve—point formula.

f dx f(x) ~

If the range of integration is broken into N uniform slices, then the relative weight at each mesh
point is given by

a+b a+3b

(7f()+32f() 12(457) +327(45)+7f(b))

1 1
1 1

1 1

1

1 2 2 2 2 2

in the trapezoid case and
1 4 1
4 1
1 4 1
1 4 1

1 4 1
1 4 2 4 2 4 2 4 2 2 4 1

in the Simpson case.

Generalize the weights to the third order case and write a function BooleIntegrator. What
requirement is there on the value of N? Check your results against the other integrators. Show that
the error scales as O(1/N°).

**(g) Devise and implement a nonuniform mesh scheme to compute the integral

* d
f 1 +x 5 =n= 3.1415926535897932384626433832795
oo X

Hint: You want to construct the mesh that is finest around x = 0 and becomes progressively coarser
out near the tails.

3. The file particle.hpp contains the specification for a class particle that encapsulates the mass,
position, velocity, and time data for a single particle. The class also provides a method evolve, which
advances the particle in time according to a given model of acceleration and a given finite-difference
integrator method.

The programs freefall and oscillator use the particle class to simulate a particle falling under
gravity and a particle oscillating under a linear restoring force. In both cases, the Euler scheme is used
to update each time step.

(a) Read over the definition of the particle class and make sure you understand its structure and the
C++ syntax. There are some rather subtle points to take note of.

* Class arguments are generally passed by reference (indicated by an ampersand) rather than by
value. The arguments (particle &p) and (const particle &p) differ in that the former
allows for changes to p within the function. The const keyword prevents changes.

* xthis is how a class object refers to itself.

* A friend function is one that is not a class member but which is affiliated with a class and
thus has access to its data. operator<< is a friend function that defines how particle
objects interact with output streams via the << operator. In other words, the definition makes
particle p; cout << p; alegal statement.

(b)

(©

(d)

The freefall program simulates a point particle falling for 100s under gravity (acceleration
g = 9.80665 m/s?) from a height of 50 km. Run the program and redirect its output to a file. Plot
the position as a function of time and overlay the exact analytical expression. Quantify the accuracy
of the numerical results for dr = 0.01. Is the accuracy still good for df = 0.1?

The oscillator program simulates a harmonic oscillator whose true behaviour is characterized
by x = 3cos(¢) and energy E = %mv2 + %sz = 9. Run the provided gnuplot script:

$ gnuplot -persist oscillator.gp

Simulating harmonic oscillator with time step dt
Simulating harmonic oscillator with time step dt
Simulating harmonic oscillator with time step dt
Simulating harmonic oscillator with time step dt
Press ENTER to continue

Press ENTER to continue

Il
[cNoNoNo]
[cNoNoN U
= N U

Three plots will be shown. Deduce their meaning by reading over oscillator.gp. Comment on
the quality of the numerical results. Why isn’t energy conserved?

Using Euler as a template, write functions EulerCromer and Verlet that implement those update
schemes. (Use the self-starting version of the Verlet.) Apply these to the harmonic oscillator.

4. The program pendula simulates a collection of particles obeying Hooke’s Law, subject to a variety of
inital conditions.

(a)

(b)

*©)

(d)

Swap out the HookesLaw function for one named pendulum that implements the correct nonlinear
restoring force felt by a simple pendulum of length L (with g/L = 1).

Simulate 150 pendula simultaneously and observe their evolution in the p-x phase space. A gnuplot
script is provided.

$./pendula 150

$ gnuplot

gnuplot> count=0

gnuplot> load ’'phase_space.gp’

The simple pendulum is a Hamiltonian system. What can you say qualitatively about the symplectic
symmetry (conservation of the enclosed phase space area)?

Modify the program so that it outputs in two-column format the current time and the enclosed phase
space area. The latter should be calculated by summing the wedges dA = %RZ df. Plot the area
versus time.

Switch out the Euler update method for the Verlet integrator (or RungaKutta, if you are partic-
ularly ambitious). Is the symplectic symmetry better respected?

