
Physics 750: Exercise 2
Tuesday, August 29, 2017

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise2.tgz -O
$ tar xzf exercise2.tgz
$ cd exercise2

The file ending in .tgz (or sometimes .tar.gz) is an archived (with tar) and compressed (with gzip)
directory of files, sometimes called a tarball.

2. The exercise2 directory contains a short C++ program named curves.cpp that instructs the computer
to output x and x2 + 2x + 3 in two columns (of width 20 characters) with x ranging from −10 to 10 in
increments of 0.2. The make command invokes the compiler, which creates an executable named curves.

$ ls
curves.cpp makefile
$ make
g++ -o curves curves.cpp -O -ansi -pedantic -Wall
$ ls
curves curves.cpp makefile

The program outputs directly to the terminal. There are likely more lines of output from curves than there
are lines in your terminal window. You can scroll through the output by piping it to the more command.

$./curves
-10 83

-9.8 79.44
-9.6 75.96
-9.4 72.56

. .

. .

. .
-0.4 2.36
-0.2 2.64

-2.05391e-15 3
0.2 3.44
0.4 3.96
. .
. .
. .

9.4 110.16
9.6 114.36
9.8 118.64
10 123

$./curves | more

Notice that we don’t get exactly x = 0. Why might that be?

3. Use BASH’s redirection operator (>) to save the curves output to a file named poly.dat. Use tail to
inspect the last five lines of the file. The data can be viewed graphically in a program called gnuplot.

$./curves > poly.dat
$ tail -n5 poly.dat

9.2 106.04
9.4 110.16
9.6 114.36
9.8 118.64
10 123

$ gnuplot
> plot "poly.dat"
> plot "poly.dat" with lines
> plot "poly.dat", x**2 + 2*x + 3
> quit

The plot command will display both data from a file and arithmetic expressions in x. The with directive
sets the style for the plot. You can see all the possible styles by typing help with at the gnuplot prompt.
Note that gnuplot has an exponentiation operator (**), whereas C++ does not.

4. Open the curves.cpp file in your favourite text editor (emacs, gedit, vim, pico) and modify it so that
the program now outputs three columns of data containing x, p(x), and q(x), where p(x) = x2 + 2x + 3
and q(x) = −1

8 x4 − 1
2 x3 + x + 2. (Warning: the expressions 1/8 and 1.0/8 do not evaluate to the same

number!) You will have to write a new polynom function to handle the fourth-order polynomial. While
you’re at it, change the range to −15 ≤ x ≤ 15 and the increment to 0.1. Check that you can exactly
reproduce the session below.

$ make
g++ -o curves curves.cpp -O -ansi -pedantic -Wall
$./curves > poly.dat
$ head -n3 poly.dat

-15 198 -4653.62
-14.9 195.21 -4519.98
-14.8 192.44 -4389.22

$ tail -n3 poly.dat
14.8 251.64 -7601.41
14.9 254.81 -7798.13

15 258 -7998.62
$ gnuplot
> plot "poly.dat"
> plot "poly.dat", x**2 + 2*x + 3
> plot "poly.dat" using 1:2, x**2 + 2*x + 3
> plot "poly.dat" using 1:3, -0.125*x**4 - 0.5*x**3 + x + 2
> plot "poly.dat" using 1:2 with line, "poly.dat" using 1:3 with lines
> plot[-5:5] "poly.dat" using 1:2 with line, "poly.dat" using 1:3 with lines
> plot[-4:1][0:10] "poly.dat" using 1:2 with line, "poly.dat" using 1:3 with lines
> plot[-3:1] "poly.dat" using 1:(8*$3-2*$2), -x**4-4*x**3-2*x**2+4*x+10
> quit

The range is set explicitly by including [xleft:xright][ybottom:ytop]. In the final plot command shown
above, the using 1:(8*$3-2*$2) directive says to plot column 1 on the x-axis and 8 times column 3
minus 2 times column 2 on the y-axis. This linear combination corresponds to the polynomial

8q(x) − 2p(x) = 8 ×
(
− 1

8 x4 − 1
2 x3 + x + 2

)
− 2 ×

(
x2 + 2x + 3

)
= −x4 − 4x3 + 8x + 16 − 2x2 − 4x − 6
= −x4 − 4x3 − 2x2 + 4x + 10.

5. By default gnuplot displays its output in an X11 window. You can also specify that the output be sent to
a file instead (in any one of many possible graphics formats). For example, the following session creates
an Encapsulated PostScript plot.

$ gnuplot
> plot[-3:1] "poly.dat" using 1:(8*$3-2*$2), -x**4-4*x**3-2*x**2+4*x+10
> set terminal postscript eps
> set output ’poly.eps’
> replot
> quit
$ evince poly.eps

6. gnuplot can fit numerical data to a given analytical form. In the following session, a general fourth-order
polynomial f(x) is defined with five free parameters. Those free parameters are passed to the fit
command using via.

$ gnuplot
> plot[-3:1] "poly.dat" using 1:(8*$3-2*$2)
> f(x) = a*x**4 + b*x**3 + c*x**2 + d*x + e
> fit[-3:1] f(x) "poly.dat" using 1:(8*$3-2*$2) via a,b,c,d,e
> plot[-3:1] "poly.dat" using 1:(8*$3-2*$2), f(x)
> quit

Find the best fit to a general third-order polynomial over the range [-3:1]. The fit should be quite bad.
Now redo the fit for a fifth-order polynomial. What is the value of the x5 coefficient? Why isn’t it exactly
zero?

7. The program triples outputs all strictly ordered triples of the integers 0 to 6 (inclusive).

$ make triples
g++ -o triples triples.cpp -O -ansi -pedantic -Wall
$./triples
(0,1,2)
(0,1,3)
(0,2,3)
(1,2,3)
.
.
.
(1,5,6)
(2,5,6)
(3,5,6)
(4,5,6)

Modify the program so that instead it counts the number of such triples. Generalize to integers 0, 1, . . . , N ,
and output the results in two-column format for all values of N from 2 to 10. You should be able to
reproduce the following.

$ make triples
g++ -o triples triples.cpp -O -ansi -pedantic -Wall
$./triples

2 1
3 4
4 10

5 20
6 35
7 56
8 84
9 120
10 165

$./triples > trip.dat
$ gnuplot -persist view7.gp

8. Using your solution to triples.cpp as a template, create a program file quadruples.cpp that writes
three columns of data: N from 0 to 99, the number of weakly ordered quadruples (i, j, k, l) formed from
the integers 0 through N , and how many of the sums i2 + j2 + k2 + l2 are perfect squares.

$ make quadruples
g++ -o quadruples quadruples.cpp -O -ansi -pedantic -Wall
$./quadruples

0 1 1
1 5 3
2 15 6
3 35 8
4 70 14
5 126 18
. . .
. . .
. . .
97 4082925 15689
98 4249575 16213
99 4421275 16462

Determine whether an integer is a perfect square by whatever means. You may want to use std::sqrt
from the cmath library in combination with integer casting.
Following view7.gp, compose a gnuplot script file view8.gp that plots the number of perfect squares
alongside the 3rd- and 4th-order polynomial fits to the data.

9. The hydrogen atom consists of a single electron orbiting a positively charged nucleus. The electron can
exist only in discrete orbitals characterized by the radial quantum number n = 1, 2, 3, . . . and the angular
momentum quantum numbers l = 0, 1, 2, . . . , n − 1 and m = −l, . . . ,−1, 0, 1, . . . , l. The energy of each
orbital, En = −(13.6 eV)/n2, is a function of the radial quantum number alone. Hence, each energy level
is gn-fold degenerate, where gn =

∑n−1
l=0 (2l + 1) = n2. (In other words, there are gn = n2 states having the

same energy En.)
Transitions between orbitals can occur if the electron absorbs or emits a photon. But since a quantum of
light has intrinsic angular momentum (1 in units of ~), conservation laws put a strict limit on which atomic
transitions are possible. This leads to the famous electric dipole selection rules: ∆l = ±1 and ∆m = 0,±1.
Allowed transitions between the various states with n = 1, 2, 3 are shown in the following diagram.

n = 1

n = 2

n = 3

l = 0 (s) l = 1 (p) l = 2 (d)

Complete the program selection.cpp so that it computes all possible transitions of the form n2 → n1

with n1 < n2 ≤ 20. Have the program output the results in four columns indicating the initial and final
radial quantum numbers, the number of allowed pathways, the energy of the emitted photon ∆E = E2−E1,
and its wavelength λ = hc/∆E in nanometers. (Recall that hc = 1240 eV · nm.)

$ make selection
g++ -o selection selection.cpp -O2 -ansi -pedantic -Wall -lm
$./selection | head -n5
2->1 3 10.2 121.569
3->1 3 12.0889 102.574
3->2 15 1.88889 656.471
4->1 3 12.75 97.2549
4->2 15 2.55 486.275

10. Modify selection.cpp so that the spectral lines in the visible spectrum, 380 nm < λ < 750 nm, are
marked with a lowercase v.

$ make selection
g++ -o selection selection.cpp -O2 -ansi -pedantic -Wall -lm
$./selection | head -n5
2->1 3 10.2 121.569
3->1 3 12.0889 102.574
3->2v 15 1.88889 656.471
4->1 3 12.75 97.2549
4->2v 15 2.55 486.275
$./selection | grep v
3->2v 15 1.88889 656.471
4->2v 15 2.55 486.275
5->2v 15 2.856 434.174
6->2v 15 3.02222 410.294
7->2v 15 3.12245 397.124
8->2v 15 3.1875 389.02
9->2v 15 3.2321 383.652

11. Quantum particles have a property called spin, which is an intrinsic angular moment. The spin of a particle
is restricted to be a multiple of ~/2. In units where ~ = 1, the spin is either an integer or an odd multiple
of one half. Electrons have spin s = 1/2.
The total spin S of a collection of electrons is determined by the angular momentum summation rule
1
2 ⊗ S = (S − 1

2) ⊕ (S + 1
2). The possible spin sectors for two, three, and four electrons are shown below.

1
2 ⊗

1
2 = 0 ⊕ 1

1
2 ⊗

1
2 ⊗

1
2 =

1
2 ⊕

1
2 ⊕

3
2

1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 2
...

1
2 ⊗

1
2 ⊗

1
2 ⊗ · · · ⊗

1
2︸ ︷︷ ︸

2N times

=

N∏
2S=0

S ⊕ S ⊕ · · · ⊕ S︸ ︷︷ ︸
C (N)

S
times

The final line shows the general result for N electrons. The coefficient C (N)
S

denotes the number of states
in a given spin sector. One can show that the total number of states in the singlet (S = 0) sector is

C (N)
0 =

1
N/2 + 1

(
N

N/2

)
=

N!
(N/2)!(N/2 + 1)!

and that the total number of states—counting the (2S + 1)-fold degeracy—is

N∑
2S=0

(2S + 1)C (N)
S
= 2N .

The 2N result is just the number of ways to orient N electrons either spin-up or spin-down.
Read over the file moments.cpp. It provides the skeleton of a program that computes the coefficients
C (N)
S

and displays them in a table. Determine how elements of the array current (indexed by the integer
2S) should be incremented in terms of the values in last. Accumulate the total number of states into the
variable num_states. The output of your program should be identical to the following.

$ make moments
g++ -o moments moments.cpp -O2 -ansi -pedantic -Wall -lm
$./moments

0 0.5 1 1.5 2 2.5 3 num
+---+-------

1| 1 | 2
2| 1 1 | 4
3| 2 1 | 8
4| 2 3 1 | 16
5| 5 4 1 | 32
6| 5 9 5 1| 64
7| 14 14 6 | 128
8| 14 28 20 7| 256
9| 42 48 27 | 512
10| 42 90 75 35| 1024
11| 132 165 110 | 2048
12| 132 297 275 154| 4096
13| 429 572 429 | 8192
14| 429 1001 1001 637| 16384
15| 1430 2002 1638 | 32768
16| 1430 3432 3640 2548| 65536
+---+-------

12. Write a function verify_singlet that computes C (N)
0 explicitly. Check its result against last[0] for

each even value of n from 2 to Nmax.

