
Physics 750: Exercise 17
Tuesday, November 28, 2017

In this exercise, you will explore the phenomenon of percolation. The setup is a square lattice of size L from
which some fraction of sites has been removed. If that fraction f is large enough, it’s possible that the collection
of remaining sites is no longer continuously connected. Instead, the sites break up into separate islands of
clusters.

Suppose that the size of each cluster is denoted Sα, where the index ranges over Ncl clusters. Simple counting
requires that

L2(1 − f ) =
Ncl∑
α=1

Sα.

What we find is that there are two regimes for the cluster sizes: Sα = O(L2) and Ncl = O(1) for small f ;
Sα = O(1) and Ncl = O(L2) for large f . In the former case, there are a small number of clusters, macroscopic
in size, and there will typically be a spanning cluster that touches two opposing edges of the square lattice. In
the latter case, there are a macroscopic number of small clusters, none of which reach across the lattice. In the
bulk limit (L → ∞), these two regimes are separated by a sharp transition at a critical fraction fc ≈ 0.407.

Rather than work with a fixed removal fraction f , it is simpler to consider a probability of removal p (in
part, because f can’t be varied continuously on a finite lattice). A new disorder configuration can be created by
sweeping through each site of the lattice, drawing a random number ξ ← [0, 1], and removing the site if ξ < p.
The quantities of interest are the size of the largest cluster and the cluster size moments, averaged over many
disorder realizations:

S̄max =
〈
max
α

Sα
〉
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〈 Ncl∑
α=1

S2
α

〉
, M4 =

〈 Ncl∑
α=1

S4
α

〉
.

Here, 〈·〉 denotes the disorder average. You’ll find that these quantities exhibit very different scaling for
p < pc ≡ fc and for p > pc. Most amazing, the dominant cluster at p = pc is a fractal with dimension
d f = 91/48.

Identifying the clusters is equivalent to assigning an index I ∈ {1, 2, · · · , Ncl} to each of the sites such that
Ii = Ij iff the sites i and j are in the same cluster. Of course, i and j are in the same cluster iff there exists a chain
of intermediate nearest-neighbour sites connecting the two. This leads rather nicely to a recursive algorithm
based on the observation that every site is considered to be in the same cluster as its four nearest neighbours.

• define A(i, I) as the following procedure:

– if i is a valid site in the lattice and Ii = 0 then assign Ii := I

– call A(i + x̂, I), A(i − x̂, I), A(i + ŷ, I), and A(i − ŷ, I)

• loop over all sites i from 1 to L2

– assign Ii := 0

• assign I := 1

• loop over all sites i from 1 to L2

– if i is a valid site in the lattice and Ii = 0 then call A(i, I)

– assign I := I + 1

What’s recursive about this? It’s the fact that the procedure A calls itself. A simpler example should make
this clear: the factorial of n is defined by 0! = 1! = 1 and n! = 1 · 2 · · · n. This mathematical operation can be
implemented as a traditional function.



unsigned long int factorial(unsigned long int n)

{

unsigned long int fact = 1;

for (unsigned long int m = 2; m <= n; ++m)

fact *= m;

return m;

}

Since n! = n · (n − 1)!, it can also be implemented as a recursive function.

unsigned long int factorial(unsigned long int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/

$ curl $WEBPATH/courses/fall2017/phys750/src/exercise17.tgz -O

$ tar xzf exercise17.tgz

$ cd exercise17

The make commandwill create three executables perc1, perc2, and perc3. The first displays an animation
showing the evolution of the cluster structure on a 50 × 50 lattice as sites are removed one at a time. Each
connected cluster is given its own colour. The second program shows a still image of the cluster structure
on a 100 × 100 lattice for one particular disorder realization in which sites have been removed with
probability p. The third program is only partially written. It compiles but doesn’t do anything yet.

2. Run ./perc1 and watch for the disintegration of the spanning cluster (as f : 0 → 1) into many isolated
islands. Using perc2, observe the cluster structure for particular choices of p. Try the following values.

$ ./perc2 0.32

[ctrl-c]

$ ./perc2 0.40

[ctrl-c]

$ ./perc2 0.48

[ctrl-c]

3. In perc1.cpp, add code to the function build_clusters that determines whether there is a span-
ning cluster and sets the boolean variable is_spanning accordingly. One strategy is to compare the
cluster_membership values of all points on the left and right edges and on the top and bottom edges of
the lattice to see if there is a value in common.
The function display uses is_spanning to control its text output. When you’ve successfully completed
the modification, you should see something like
removal fraction = 0.285 clusters = 31 (spanning)

removal fraction = 0.617 clusters = 278

4. Modify perc3.cpp so that progam also calculates the size of each cluster. You can do this any way
you wish, but the following approach is particularly simple. You’ll notice that clusters are constructed
recursively using a function assign_membership that calls itself. Change the prototype to read



//void assign_membership(size_t i, size_t j, long int m)

long int assign_membership(size_t i, size_t j, long int m)

and have the function return 1 plus the number of sites connected to each of its nearest neighbours.

5. The file perc3.cpp contains no graphics code. It’s supposed to output the values S̄max,M2,M4 averaged over
100 disorder realizations for particular values of L and p. Make the necessary changes to build_clusters
so the program functions as intended. When you’re done, you should get output like the following.

$ ./perc3

Usage: perc3 (0 < L < 500) (0 <= p < 1)

$ ./perc3 12 0.25

103.84 10943.4 1.23475e+08

$ ./perc3 96 0.66

33.19 20944.9 5.44033e+06

6. The shell script transition.bash outputs the quantities L, p, S̄max,M2,M4 in 5-column format. The data
are arranged in blocks of increasing L that sweep over the values 0 ≤ p < 1. For example, to plot S̄max/L2

as a function of p, we would execute the following commands.

$ ./transition.bash > tr.dat

Computing L = 10

Computing L = 20

Computing L = 30

Computing L = 60

Computing L = 100

Computing L = 200

Computing L = 300

$ gnuplot

gnuplot> plot "tr.dat" using 2:3

gnuplot> plot "tr.dat" using 2:($3/$1**2) with lines

Try plotting M2/L2 and M4/L4 versus p as well. Use the Binder ratio U = M4/(M2)2 to pinpoint the
critical value of p.

7. The shell script scaling.bash outputs the same quantities but now organized in blocks of constant p and
sweeping over L. What do the following plots signify?

$ ./scaling.bash > sc.dat

Computing p = 0.1

Computing p = 0.2

Computing p = 0.3

Computing p = 0.35

Computing p = 0.40725379

Computing p = 0.45

Computing p = 0.5

Computing p = 0.6

Computing p = 0.7

$ gnuplot

gnuplot> plot "sc.dat" using (1.0/$1):($3/$1**2) with lines



gnuplot> set logscale

gnuplot> plot "sc.dat" using 1:3 with linespoints, \

0.45*x**(91/48.), 0.9*x**2


