
Physics 750: Exercise 15
Thursday, November 9, 2017

In this exercise, we undertake an enumeration of the self-avoiding walk (SAW) on the square and cubic
lattices. Recall that enumeration is the strategy of exhaustively generating all SAW configurations up to some
cutoff length—as opposed to sampling them stochastically, which is difficult to do efficiently in an unbaised way
given the excluded volume constraint.

The configurations can be organized into a branching diagram with SAWs of equal length at the same level.
Each node at level N has children corresponding to all the allowed walks of length N +1. For the square or cubic
lattices, with coordination numbers z = 4 and z = 6, we can take advantage of the z-fold rotation symmetry by
assuming that the single-step walk starts in a particular direction; the number of children at each node is between
0 and z − 1.

The number of configurations generated by random walks with no immediate backtracking (but no memory
beyond the last step) forms an upper bound for CN , the total SAW count at level N :

CN < z(z − 1)N−1

A likely functional form for CN is
CN ∼ µ

N−1Nδ

with 0 < µ < z − 1 and |δ | � 1.
In class, we discussed two algorithms designed to systematically traverse the tree. These are referred to

as depth-first search (DFS) and breadth-first search (BFS). The first goes as deep as possible down one branch
before backtracking. The second generates all configurations at the highest incomplete level before moving
on. We found that the two algorithms could be implemented in such a way that their code structure is almost
identical, except for the choice of data structure. In one case, the intermediate configurations are stored in a
first-in first-out (FIFO) list or queue. In the other a last-in first-out (LIFO) list or stack is used.

pop

top

front

back

pop

pushpush

queue (FIFO) stack (LIFO)

For a conventional random walk, the average end-to-end distance of the walk is characterized by 〈r2
N 〉 ∼ N2ν

with the exponent taking the diffusive value ν = 1/2. After the imposition of the excluded volume constraint,
the behaviour is still powerlaw but with a modified exponent ν > 1/2 (that depends on the spatial dimension).
In the limit of many walk steps, the ratio of successive squared displacements behaves as

〈r2
N+1〉

〈r2
N 〉
∼

(
1 +

1
N

)2ν
∼ 1 +

2ν
N
.

We can use this property to extract the value of ν from numerical data.
The standard SAWs we have encountered so far are athermal, and each configuration carries the same weight

as all the others. If instead we assume that the walk is coupled to a heat bath at temperature kT and that there is
an interaction of strength −V between adjacent walks, then the weight associated with each configuration is enx ,
where n is the nearest-neighbour count and x = V/kT is the dimensionless inverse temperature. A collapsed
walk with n = 5 and a swollen walk with n = 0 are shown below.

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/

$ curl $WEBPATH/courses/fall2017/phys750/src/exercise15.tgz -O

$ tar xzf exercise15.tgz

$ cd exercise15

The make command creates an executable saw2d_bfs, which enumerates the SAWs of increasing length
(up to some maximum length set by size_t N = 14; in saw2d_bfs.cpp) using the BFS algorithm.

$ make

$./saw2d_bfs

1 4

2 12

3 36

4 100

5 284

...

$./saw2d_bfs > saw.dat

$ gnuplot

gnuplot> set logscale y

gnuplot> plot "saw.dat" using 1:2 with linespoints, 4*3**(x-1)

gnuplot> unset logscale

gnuplot> plot "saw.dat" using 1:($2/(4*3**($1-1))) with linespoints

You can try to fit the number of configurations to the suggested functional form:

gnuplot> f(x) = C*a**(x-1)*x**b

gnuplot> C = 4; a = 3; b = 0.1

gnuplot> fit[6:] f(x) "saw.dat" using 1:2 via a,b,C

gnuplot> plot "saw.dat" using 1:2 with points, f(x), 4*3**(x-1)

2. So far, the program only counts the number of SAWs of each given length. Modify the code so that it also
computes 〈r2

N 〉, the mean squared displacement of the walk. Include this measurement as a third column
of output. Your results should look like this.

$./saw_bfs

1 4 1

2 12 2.66667

3 36 4.55556

4 100 7.04

5 284 9.56338

...

A data file containing the ratios 〈r2
N+1〉/〈r

2
N 〉 can be constructed using the awk utility. An estimate of ν

can be determined by gnuplot.

$./saw_bfs | awk ’BEGIN { r2 = 0.0 } { if (r2 != 0.0) \

print $1-1,$3/r2; r2 = $3 }’ > ratios.dat

$ cat ratios.dat

1 2.66667

2 1.70833

3 1.54536

4 1.35843

5 1.31485

...

$ gnuplot

gnuplot> plot[0:][1:] "ratios.dat" using (1.0/$1):2

gnuplot> f(x) = 1.0 + 2.0*nu*x + c*x**2

gnuplot> fit[0:0.2] f(x) "ratios.dat" using (1.0/$1):2 via nu,c

gnuplot> replot f(x)

3. The BFS algorithm is implemented using a queue data structure. Create a nearly identical program
saw2d_dfs.cpp that implements the DFS algorithm by switching out the queue for a stack. (Remember
that the stack also has push and pop methods, but rather than front and back, it has only top.)
The correct header is

#include <stack>

using std::stack;

Check that your old and new programs produce identical output.

$./saw2d_bfs > bfs.dat

$./saw2d_dfs > dfs.dat

$ diff bfs.dat dfs.dat

A cute trick is that the DFS program can be generated automatically using the search and replace
functionality of the sed utility.

$ sed -e ’s/queue/stack/’ -e ’s/.front()/.top()/’ \

-e ’s/.back()/.top()/’ saw2d_bfs.cpp > saw2d_dfs.cpp

4. Write a program saw3d_bfs.cpp that computes all SAWs on a three-dimensional cubic lattice up to length
N = 8. You should be able to reproduce the following results.

$./saw3d_bfs

1 6 1

2 30 2.4

3 150 3.88

4 726 5.55372

5 3534 7.2343

6 16926 9.07054

7 81390 10.8972

8 387966 12.8451

Can you estimate the exponent ν? It should be ν ≈ 7/12 in the large N limit.

5. Try implementing the interaction scheme discussed in the introduction. This involves replacing

〈r2
N 〉 =

1
CN

∑
σN

r2(σN)

with the Boltzmann-weighted average

〈r2
N 〉 =

(∑
σN

r2(σN) exn(σN)
) / (∑

σN

exn(σN)
)
.

Here, x is the reduced inverse temperature, and σN ranges over all SAWs of length N . r2(σN) and n(σN)
are the squared displacement and number of nearest neighbours for a particular walk. Plot 〈r2

N 〉 for various
N over the range −10 < x < 10.

