
Physics 750: Exercise 14
Tuesday, November 7, 2017

In this exercise, we consider the problem of how to generate pseudo-random sequences. Since the computer
is purely deterministic, the best we can hope for is to find a computational rule whose output is close to random.
More precisely, the rule should produce numbers whose statistical properties are approximately those of numbers
drawn from a random distribution.

Suppose we have a single-argument rule denoted F, then the sequence X0, X1, X2, . . . corresponds to

X0

X1 = F (X0)

X2 = F (X1) = F (F (X0) = F2(X0)
...

Xn = F (Xn−1) = F (F (· · · F︸      ︷︷      ︸
n times

(X0))) = Fn(X0)

The initial value X0 is called the seed. The smallest value p such that Fp (X0) = X0 is the period of F. Since the
function will execute repeating cycles X0, X1, . . . , Xp−1, X0, X1, . . ., we clearly want p to be large. At the very
least, it should be larger than the number of random numbers we need. Note that F could also depend on more
than one previous value. A two-argument rule might produce a sequence X2 = F (X0, X1), X3 = F (X2, X1), . . .,
but would require two seeds, X0 and X1. In this case, the period is defined by F (Xp, Xp−1) = X0 and
F (X0, Xp−1) = X1.

In addition to having a long period, a suitable generator must produce numbers that are only weakly correlated
with one another. Theoretical results is this area are rather scarce, so correlation is usually judged with empirical
tests. In this exercise, you’ll have a chance to implement a few such tests.

Typical generators are defined using a recursion rule restricted to a finite range of integers {0, 1, 2, . . . ,m−1}:

Linear congruential: Xn+1 = (aXn + c) mod m

Quadratic congruential: Xn+1 = (aX2
n + bXn + c) mod m

Fibonacci: Xn+1 = (Xn + Xn−1) mod m

Lagged Fibonacci: Xn+1 = (Xn−j + Xn−k ) mod m

A rather nice simplification is that with the choice of m = 232, each number fits into one machine word and there
is no need to compute the modulus (the high bits are properly truncated during overflow).

There are some subtleties when it comes to implementation. The C++ language does not specify the bit sizes
of the historic numeric types. Their sizes are platform-dependent. Atmost, their relative sizes are guaranteed: for
example, sizeof(int) <= sizeof(long int). But C++ now supports integer types of fixed width (int8_t,
int16_t, int32_t, int64_t, and corresponding unsigned versions uint8_t, etc.). These are defined in the
cstdint header file. This is an official part of the language as of C++11.

A generator defined modulo 232 produces a sequence of numbers of type uint32_t. For most applications,
you are likely to be interested in random integer or floating point numbers distributed uniformly in some
arbitrary interval [a, b] or [a, b). In order to transform the uint32_ts into the types you want in the ranges
you want, it is helpful to understand how to manipulate the underlying bit patterns. C++ has inherited all the
standard bitwise operators from C. There is a unary operator ~ that takes the bitwise complement of a number,
~(b31 · · · b0)2 = ([1 − b31] · · · [1 − b0])2; in other words, all zeros are exchanged for ones and vice versa. There
are also five binary operators, &, |, ^, <<, and >>. The first three denote (bitwise) logical AND, OR, and XOR
(exclusive or). The last two are the left and right bit shift operators.

As an illustration, consider (72 & 184 == 8) and (72 | 184 == 248) and (72 ^ 184 == 170))



01001000
AND 10111000

00001000

01001000
OR 10111000

11111000

01001000
XOR 10111000

11110000

In the examples above, the operations act on bits b and b′ in the same position: b AND b′ yields 1 if both b and
b′ are 1; b OR b′ yields 1 if either b or b′ are 1; and b XOR b′ yields 1 if either b or b′ are 1 but not both. The
bit shift operators behave as follows:

(b31b30 · · · b2b0)2 « n = (b32−n · · · b2b1 0 · · · 00︸  ︷︷  ︸
n times

)2

(b31b30 · · · b1b0)2 » n = (0 · · · 00︸  ︷︷  ︸
n times

b31 · · · bn+1bn)2

The following operators can be used to set, clear, toggle, and test bits.

const uint8_t mask = 0x8F; // 10001111

uint8_t i = 0;

i |= (1 << 4); // set bit 4 // i == 00010000

i |= mask; // set the highest and lowest four bits // i == 10011111

i &= ~(1 << 7); // clear the highest bit // i == 00011111

i ^= (1 << 0); // toggle bit zero // i == 00011110

i ^= mask; // toggle mask bits // i == 10010001

if (i & (1 << n)) ... // test if the nth bit is set

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/

$ curl $WEBPATH/courses/fall2017/phys750/src/exercise14.tgz -O

$ tar xzf exercise14.tgz

$ cd exercise14

In exercise14 directory you will find a file rand.hpp that contains templated class definitions for the
generator linear_congruential. The template parameters fix the values of a and c. Instantiations of
the class are function objects that produce integers in the range ∈ {0, 1, . . . 232 − 1} when called.

// a = 1664525, c = 1013904223

// seeded with 18462

linear_congruential<1664525,1013904223> F(18462);

uint32 x = F();

uint32 y[100]’

generate(y,y+100,F);

vector<uint32> z(100);

generate(z.begin(),z.end(),F);

The code above puts a random number into x and 100 random numbers into the C array y and the vector
z. (std::generate is defined in the STL header algorithm. It assigns F() to each element of a list.)
There is another class rnd, which serves as a wrapper for the generator. This class provides methods for
generating numbers other than 32-bit integers.



rnd< linear_congruential<1664525,1013904223> > R(18462);

const double x = R(); // double from [0,1)

const int i = R.randInt(3); // integer from {0,1,2,3}

const int j = R.randInt(1,6); // integer from {1,2,3,4,5,6}

2. Class linear_congruential implements the recursion Xn+1 = aXn + c mod 232. Write a class
quadratic_congruential for Xn+1 = aX2

n + bXn + c mod 232.

3. Write a class lagged_fibonacci Xn+1 = Xn−j + Xn−k mod 232 ( j < k). This is a little tricky. At every
step, the last k + 1 values have to be stored, and the generator must be seeded with at least k + 1 initial
values. (Either use a template for general j and k, or fix the values j = 25, k = 56.)
The lagged fibonacci scheme is sensitive to the initial values. They need to be quite random already.
(What happens if all the initial values are zero? What happens if all initial seeds are even?) I suggest you
use a single seed X0 and generate X1, . . . , Xk using a linear congruential generator.

4. Write a 32-bit generator middle16_bits in which each successive value is the square of the middle 16
bits of the previous value. For example, if an = 0x2A8B3D65, then an+1 is computed as follows:

an = 00101010 1000101100111101︸                   ︷︷                   ︸
middle 16 bits

01100101

t = mid16(an) = 0000000000000000 1000101100111101︸                   ︷︷                   ︸
middle 16 bits

an+1 = t2 = 01001011101110110100110010001001

Multiplication and the bit shift operators are all you need.

*5. Write a 32-bit generator middle32_bits. This is similar to the previous question, but the order of
operations is reversed. Each an is first squared (into a 64-bit type). The middle 32 bits are then assigned
to an+1.

*6. The class rnd provides a method rand23 that returns a single-precision floating point number in the
interval [0, 1).

const float x = R.rand23();

The method relies on the convert32_t type defined in bitconvert.h. (You can see how this works by
looking over bit_test.cpp). convert32_t is a just a union on various floating point and integral types
that have the same 32-bit width. A union is something like a struct, but it allows the same underlying
bit pattern to be variously interpreted.
The float has one sign bit, an 8-bit exponent, and a 23-bit mantissa:

(±)s × 2(e1 · · ·e8)2−127 × (1.m1m2 . . .m23)2.

rand23 returns a float in the range +20(1.000 · · · 00)2 − 1 to +20(1.111 · · · 11)2 − 1. Since the generator
produces 32-bit values, its output is bit shifted 9 places so that the 23 least significant bits remain filled.
The most significant 9 bits are then set to 127 = 0011111112.
The same trick can be employed for a double, which has the following bit layout:

(±)s × 2(e1 · · ·e11)2−1023 × (1.m1m2 . . .m52)2.

Write the corresponding method rand52. Fill the convert64_t type with two 32-bit integers. Set the 12
high bits to 1023 = 011111111112.
Or, if you’re feeling adventurous, fill the mantissa with the highest 26 bits from each of the uint32_ts.



**7. The method randInt(n) returns a number from {0, 1, . . . , n} by generating a real number U ∈ [0, 1) and
then calculating b(n + 1)Uc. (bxc denotes the floor of x; that is, x rounded down to the nearest integer.)
Rewrite the function so that the output X ∈ {0, 1, . . . , 232 − 1} from the generator is bit-shifted to the right
until its high bit is aligned with the most significant bit of n. Accept X ′ ← X >> (31 − log2 n) if X ′ ≤ n.
Otherwise, generate another X and try again.

8. The program walk1d.cpp generates a sequence of random numbers

X1, X2︸ ︷︷ ︸
s1

, X3, X4︸ ︷︷ ︸
s2

, X5, X6︸ ︷︷ ︸
s3

, · · · ,

which it reinterprets as a sequence of steps si = ±1. The positive or negative value is assigned based on
the pair’s relative ordering

si = sgn(X2i−1 − X2i) =



+1 if X2i−1 > X2i

−1 if X2i−1 < X2i

The sequence (si) defines a random walker in one dimension. After N steps, the walker is at position

RN =

N∑
i=1

si .

Its distance from the origin is characterized by

R2
N =

N∑
i=1

N∑
j=1

sis j =
N∑
i=1

s2
i +
∑
i,j

sis j = N +
∑
i,j

sis j .

For purely random steps, the averages over many measurements should look like 〈RN 〉 = 0 and 〈R2
N 〉 = N .

$ make walk1d

$ ./walk1d > walk1d.dat

$ gnuplot

gnuplot> plot "walk1d.dat" using 1:3 with lines, x

Write a new program walk3d.cpp that assigned steps s = (±1, 0, 0), (0,±1, 0), or (0, 0,±1) in three-
dimensional space according to the 3! = 6 possible orderings of the triplets

X1, X2, X3︸      ︷︷      ︸
s1

, X4, X5, X6︸      ︷︷      ︸
s2

, X7, X8, X9︸      ︷︷      ︸
s3

, · · ·

Again, 〈RN 〉 = 0 and 〈RN · RN 〉 = N .

9. Write a program moments.cpp that computes the first several moments of a large random sequence.
Compare the results for various generators to the exact values,∫ 1

0
dx xn =

1
n + 1

.

10. Write a program dice.cpp that simulates many (> 100 000) rolls of a standard six-sided die. Keep a
frequency histogram of the number of identical rolls in a row. The probability of any given face coming
up is p = 1/6. The probability of rolling n identical numbers in a row is pn−1(1 − p).



$ ./dice.cpp > dice.dat

$ gnuplot

gnuplot> p = 1.0/6.0;

gnuplot> plot "dice.dat", (1-p)*p**(x-1)

gnuplot> set logscale y

gnuplot> replot

11. Here is an algorithm due to MacLaren and Marsaglia that takes two random sequences and produces a
single “more random” sequence.

M1. Set X , Y equal to the next numbers if the sequences Xn, Yn, respectively.
M2. Set j ← bkY/mc, where m is the modulus used in the sequence Yn; that is, j is a random integer

value, 0 ≤ j < k, determined by Y .
M3. Output V [ j] and then set V [ j]← X .

Implement this algorithm and construct a composite Z = X ? Y from from two (rather bad) linear
congruential generators X0 = 0, Xn = (5Xn + 3) mod 8 and Y0 = 0, Yn = (5Xn + 1) mod 8. Compare (Zn)
to (Xn) and (Yn).
Note that mod 8 sequences can be called using an optional third template parameter:

linear_congruential<5,3,8> X(0);

linear_congruential<5,1,8> Y(0);

Try plotting the coordinate pairs (A0, A1), (A2, A3), (A4, A5), . . . in gnuplot for each of A = X,Y, Z . Do
the random numbers fall mainly in the plane?


