
Physics 750: Exercise 11
Tuesday, October 24, 2017

Data transferred over a UNIX stream is encoded as a sequence of characters (bytes) terminated by the end-
of-file (EOF) marker. The C++ objects cin and cout provide a convenient interface to the terminal’s standard
input and standard output streams. The operators >> and << are used to chain variables, literal expressions,
and manipulators to cin and cout. The resulting behaviour is context-sensitive. The statement cin >> x
causes characters (up to the next block of white space or the last meaningful character) to be read from the
stream and interpreted according to whichever type the variable x was declared as. If the input stream has been
exhausted (i.e., the EOF has been reached) or if the text read in is incompatible with the presumed type (e.g., we
can understand "123" as an int, but not "abc"), then the method cin.good() will evaluate to false. For
example, from a stream containing the data “Only $5.99?[EOF],” we can read five characters, a floating point
number, and another character before reaching the end:

char c1, c2;
double price;
cin >> c1 >> c1 >> c1 >> c1 >> c1 >> price >> c2;
assert( cin.good() );
assert( c1 == ’$’ );
assert( c2 == ’?’ );
assert( price > 5.98 and price < 6.00 );
cin >> c2;
assert( !cin.good() );

Conversely, the statement cout << x causes the variable x to be translated into text (again, according to
the type of x) and dumped to the standard output stream. The form of the output can be controlled using either
cout’s methods or its stream manipulators.

1. Use the curl command to download from the class website everything you’ll need for this exercise.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise11.tgz -O
$ tar xzf exercise11.tgz
$ cd exercise11

2. A program file table.cpp and a data file elements.dat are included in the Lab3 directory. The data
file contains a list of the elements from H to Xe in order of increasing atomic weight. The program table
reads each word it encounters and simply dumps it to cout on a line of its own. It keeps doing this until
it encounters an EOF.

$ make table
g++ -o table table.cpp -O2 -ansi -pedantic -Wall
$ cat elements.dat
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu
Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
$ ./table < elements.dat
H
He
Li
Be
.
.
.
Xe



Modify the program (i.e., edit the table.cpp code in emacs or gedit and then make table again) so
that each element is immediately followed by its atomic number and is grouped in the same row with the
other elements that share its closed-shell structure. Remember that the 1s orbital holds 2 electrons, the
2s2p orbitals hold 8, the 3s3p hold another 8, the 4s3d4p orbitals hold 18, and the 5s4d5p hold another
18.

$ ./table < elements.dat
H1 He2
Li3 Be4 B5 C6 N7 O8 F9 Ne10
Na11 Mg12 Al13 Si14 P15 S16 Cl17 Ar18
K19 Ca20 Sc21 Ti22 V23 Cr24 Mn25 Fe26 Co27 Ni28 Cu29 Zn30 Ga31 Ge32 As33 Se34 Br35 Kr36
Rb37 Sr38 Y39 Zr40 Nb41 Mo42 Tc43 Ru44 Rh45 Pd46 Ag47 Cd48 In49 Sn50 Sb51 Te52 I53 Xe54

3. Now consider the program file read.cpp and the data file resistivity.dat. The data file contains a
record of (fictitious) electrical resistivity measurements performed on various elements. The convention
adopted here is that the element name is enclosed in parentheses and the corresponding set ofmeasurements
is given as a comma-separated list enclosed in braces. If you compile and run the program read, you’ll
find that it extracts and writes to the terminal each of the element names.

$ make read
g++ -o read read.cpp -O2 -ansi -pedantic -Wall
$ more resistivity.dat
Experimental Data

Trial 1
Performed January 1, 2009
Sample A (Calcium)
Resistivity measuresments [nOhm.m]
{ 35.0955, 34.9091, 34.9141, 33.7726, 34.0036, 34.8873, 34.0472, 34.0721, 34.7659 }
.
.
.
$ ./read < resistivity.dat
Calcium:
Aluminum:
Copper:
Silver:
Done.

Modify the program so that it also reports the number of measurements and their average. Your output
should look like this:

$ ./read < resistivity.dat
Calcium: average over 9 measurements is 34.4964
Aluminum: average over 3 measurements is 27.3406
Copper: average over 5 measurements is 17.1692
Silver: average over 6 measurements is 16.2828
Done.

4. Heron’s iterative method for computing the square root of number (a 7→ a1/2) is one of the most ancient
numerical algorithms—it’s been known for nearly two thousands years. It is straightforward to derive a
generalization of this method that computes ap/q with p and q integer:

x0 := 1

xn+1 :=
(
1 −

1
q

)
xn +

ap

q
x1−q
n



If the sequence (xn) converges, it must converge to ap/q.
Fill in the body of the program ratpow.cpp so that the recurrence relation shown above is computed
starting from x = 1. Arrange for values of a, p, and q to be read in from the command line. The formally
correct stopping condition is that xqn becomes sufficiently close to ap. Instead, let’s just have the loop
terminate when the next value in the sequence is sufficiently close to the last one. That comparison should
be carried out not with the == operator but with a function nearly_equal that checks whether two
numbers x and y satisfy |x − y | < ε |x | and |x − y | < ε |y |.

$ make ratpow
g++ -o ratpow ratpow.cpp -O2 -ansi -pedantic -Wall -lm
$ ./ratpow
Returns the rational power a^(p/q) and compares to the
value computed with std::pow in the cmath library
Usage: ratpow a p q

a=nonnegative fp number
p,q=nonzero integers

$ ./ratpow 1.0 1 1
Newton’s method value: 1
C Math library value: 1
$ ./ratpow 2.0 1 2
Newton’s method value: 1.414213562373095
C Math library value: 1.414213562373095
$ ./ratpow 3.5 4 5
Newton’s method value: 2.724296895429098
C Math library value: 2.724296895429098

5. The file series.cpp defines a function atan_series that computes the first N terms of the series
expansion
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The function makes use of Horner’s scheme (we encountered this in Lab 2) to minimize the number of
arithmetic operations required. Change the code in main so that the output is in scientific notation and
uses 10 decimal digits of precision. You should be able to reproduce exactly the session shown below.

$ make series
g++ -o series series.cpp -O2 -ansi -pedantic -Wall -lm
$ ./series
Calculates the sequence of partial series expansions

x
x - x^3/3
x - x^3/3 + x^5/5
x - x^3/3 + x^5/5 - x^7/7
etc.

approximating atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...

Usage: series x-value
$ ./series 0.5



For x = 0.5, the successive partial expansions have the following values:
1 4.5833333333e-01
2 4.6458333333e-01
3 4.6346726190e-01
4 4.6368427579e-01
5 4.6363988659e-01
.
.
.
28 4.6364760900e-01
29 4.6364760900e-01
30 4.6364760900e-01

--------------------------
inf 4.6364760900e-01

$ gnuplot -persist view5.gp

The view5.gp script plots the results for x = 0.5, 0.75, 1.0, 1.05 as a function of the number of terms
included. The radius of convergence for this expansion is 1.

6. Alternate series for arctan x with better convergence properties can be constructed by expanding with
respect to new variable y = x2/(1+ x2) that maps x ∈ R onto y(x) ∈ [0, 1). Keep in mind that y itself has
an expansion y = x2 − x4 + x6 − x8 + · · · , so a series truncated at finite order in y actually includes terms
at all orders in x.
version 2:
Since the inverse of y(x) is
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,
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version 3:
Similarly, (1/x + x) arctan(x) has an expansion
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Rearranging the terms gives
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With these results in mind, make the following changes to series.cpp. Implement versions 2 and 3
of the expansion in the functions named atan_series2 and atan_series3. Have the program output
each version in its own column.



$ ./series 0.99
For x = 0.99, the successive partial expansions have the following values:

1 6.6656700000e-01 9.9000000000e-01 4.9997474875e-01
2 8.5676500998e-01 8.2665824958e-01 6.6495808335e-01
3 7.2361281742e-01 7.9431821634e-01 7.3028818435e-01
4 8.2511473381e-01 7.8517106891e-01 7.5800541305e-01
5 7.4372034706e-01 7.8215266270e-01 7.7020037778e-01
.
.
.
28 7.8518321535e-01 7.8037308008e-01 7.8037307961e-01
29 7.7581569879e-01 7.8037308007e-01 7.8037307985e-01
30 7.8469578200e-01 7.8037308007e-01 7.8037307996e-01

--------------------------
inf 7.8037308007e-01

$ gnuplot -persist view6.gp

The view6.gp script shows the rate of convergence graphically. Convince yourself that version 2 of the
expansion converges the fastest.

7. (Assignment 2: to be submitted before the next lab period.) The complete elliptic integral of the first
kind,
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1
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.

Amazingly, this simple result has rather deep implications (related to the so-called arithmetic-geometric
mean) and can be used to derive [Borwein and Borwein, SIAMReview 26, 351 (1984)] an iterative scheme
for computing π that converges exponentially: viz., one starts with the initial conditions α0 =

√
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√
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There are also several exact identities relating linear combinations of arctan to π.

π = 4 arctan(1/2) + 4 arctan(1/5) + 4 arctan(1/8)

= 16 arctan(1/5) − 4 arctan(1/239)

= 24 arctan(1/8) + 8 arctan(1/57) + 4 arctan(1/239)

Modify the file pi.cpp so that the program outputs in the first column an integer count, in the second
column the AGM expansion result, and in the three other columns the numerical estimates of π based on
the arctan formulas shown above. The first column refers either to the number of iterations in the AGM
scheme or to the number of terms included in the series expansion of arctan. Be sure to use the function
atan_series2 that you wrote for question 5. The final output should look like this:



$ make pi
g++ -o pi pi.cpp -O2 -ansi -pedantic -Wall -lm
$ ./pi
Usage: pi #iterations
$ ./pi 7
1 3.1426067539416 3.3 3.1832635983264 3.1570872788666
2 3.141592660966 3.1538461538462 3.1422380549654 3.1416881708556
3 3.1415926535898 3.1430059171598 3.141606891258 3.141593494527
4 3.1415926535898 3.141783262891 3.1415930195281 3.1415926622229
5 3.1415926535898 3.1416206328643 3.1415926638427 3.1415926536865
6 3.1415926535898 3.1415969882255 3.1415926538935 3.1415926535909
7 3.1415926535898 3.1415933509 3.1415926535991 3.1415926535898

-----------------------------------------------------------------------------------
inf 3.1415926535898
$ gnuplot -persist view7.gp

If you’ve done everything correctly, the script view7.gp should give you a plot of the discrepancy between
the approximation and exact value in each of the four cases. Be sure you understand what is implied by
the shapes of the various curves.


