Physics 750: Exercise 1

Thursday, August 24, 2017

1. Log in to the account on your computer. Open a terminal window to access the command line interface. See what's in your home directory, and check that your default shell is set to BASH.
```
$ ls -F
Desktop/ public_html/
$ mkdir phys750
$ ls -F
Desktop/ phys750/ public_html/
$ cd phys750
$ env | grep SHELL
SHELL=/bin/bash
```

2. Download the Exercise 1 instructions and source code from the class website. You can either do this from the terminal as follows.
```
$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise1.tgz -0
$ tar xzf exercisel.tgz
$ cd exercisel
```

3. Inside the exercisel directory is a C++ source file gaussian. cpp and makefile containing instructions to compile the program.
```
$ ls
gaussian.cpp makefile
$ head -n4 gaussian.cpp
// read in required header files
#include <iostream>
using std::cout;
using std::endl;
$ make gaussian
g++ -o gaussian gaussian.cpp
$ ls -F
gaussian* gaussian.cpp makefile
```

4. The program gaussian defines the function $f(x)=C e^{-a x^{2}}$ and outputs a three-column table of values

$$
\left.\left.x \quad f(x-1)\right|_{C=2, a=1} \quad f(x-2)\right|_{C=1.5, a=2}
$$

with x ranging in discrete steps over the interval $[-1.5,4.5]$.

```
$ ./gaussian
\begin{tabular}{ccc}
-1.5 & 0.00386091 & \(3.4346 e-11\) \\
-1.494 & 0.00397835 & \(3.7353 e-11\) \\
-1.488 & 0.00409906 & \(4.06175 e-11\) \\
. &. &. \\
. &. &. \\
4.488 & \(1.04074 e-05\) & \(6.30087 e-06\) \\
4.494 & \(9.98039 e-06\) & \(5.93522 e-06\) \\
4.5 & \(9.57023 e-06\) & \(5.58998 e-06\)
\end{tabular}
```

5. The program output can be redirected to a file (using >) and viewed with gnuplot.
```
$ ./gaussian > curves.dat
$ gnuplot
> plot[-1.5:4.5] "curves.dat" using 1:2 with lines
> replot "curves.dat" using 1:3 with lines
```

6. Superimpose the arithmetic and geometric means of the two curves.
```
> replot "curves.dat" using 1:(0.5*($2+$3)) with lines
> replot "curves.dat" using 1:(sqrt($2*$3)) with lines
```

7. See if you can figure out what's going on here.
```
> a1=1.0; C1=2.0; x1=1.0;
> a2=2.0; C2=1.5; x2=2.0;
> plot "curves.dat" using 2:3
> replot C2*exp(-a2*(x1+sqrt(-log(x/C1)/a1)-x2)**2)
> replot C2*exp(-a2*(x1-sqrt(-log(x/C1)/a1)-x2)**2)
> quit
```

8. Use emacs (or your favourite text editor) to modify the gaussian. cpp program file. Change the function to $f(x)=C e^{-a|x|}$. (You might want to use the fabs function. ${ }^{\dagger}$) Recompile, and plot everything again.
```
$ emacs gaussian.cpp &
$ make
```

9. A Lissajous figure ${ }^{\ddagger}$ refers to a planar trajectory that is harmonic in two orthogonal directions. This is something you might have seen traced out on an oscilloscope.
Write a C++ program that computes the quantities

$$
\begin{aligned}
& x(t)=A \cos (a t) \\
& y(t)=B \cos (b t+\delta)
\end{aligned}
$$

at $100 N$ equally spaced points in the range $0<t<2 \pi N \times \max (1 / a, 1 / b)$ and outputs the results in three-column format $t, x(t), y(t)$ to the standard output stream (stdout, referred to in $\mathrm{C}++$ as cout). Have your program require six command line arguments: the first five interpreted as floating-point numbers (with the atof function, say) and used to set the values of A, B, a, b, δ; the sixth interpreted as an integer (with atoi) and assigned to N. The program output can then be written to a file via redirection ($>$) and viewed with gnuplot.

```
$ make lissajous
$ ./lissajous 2.6 1 3 2 0.5 2 > curvel.dat
$ ./lissajous 1 1 1.1 1.2 0 35 > curve2.dat
$ gnuplot
> plot "curvel.dat" using 2:3 with lines
> plot "curve2.dat" using 1:($2+$3) w l, 2*\operatorname{cos}(0.05*x), -2*\operatorname{cos(0.05*x)}
> quit
```

If you've done everything correctly, you should see something like this:

[^0]
(a) Convince yourself that a Lissajous figure is closed iff a / b is a rational number.
(b) How does the ratio a / b control the shape of the curve?
(c) In the case $a=b$, how does the phase shift δ effect the curve?
(d) Investigate the beats produced when the two sinusoidal components-with equal amplitudes and slightly different frequencies-are superimposed. In other words, plot $z(t)=x(t)+y(t)$ versus t for $A=B$ and $|a-b| \ll 1$. The result is a product of a slowly varying envelope function and a rapidly varying beat function:
$$
\cos (\alpha t)+\cos (\beta t)=2 \cos \left[\frac{1}{2}(\alpha+\beta) t\right] \cos \left[\frac{1}{2}(\alpha-\beta) t\right]
$$
10. The Mandelbrot set ${ }^{\S}$ consists of the bounded orbits of the complex-valued recurrence relation
$$
z_{n+1}=z_{n}^{2}+c, \quad z_{0}=c \equiv x+i y
$$

The set is typically visualized as a plot in the $x-y$ plane, with each point corresponding to an unbounded orbit coloured according to its rate of escape.

Write a C++ program that implements the following algorithm. Scan over a fine grid of c values such that its real and imaginary parts range over $x \in[-2,1]$ and $y \in[-1,1]$. At each point, run the recurrence relation until $\left|z_{n}\right|>R$ or $n>N$. I suggest the values $R=3$ and $N=500$. You'll have to make a decision whether to represent each complex number as two doubles or as a single complex<double> class object.
Output the escape counts n as a rectangular table of values to stdout, and then plot the Mandelbrot set using gnuplot:

```
$ make mandelbrot
$ ./mandelbrot > mandelbrot.dat
$ gnuplot
gnuplot> set pm3d map
gnuplot> splot "mandelbrot.dat" matrix
```

11. Take a look at the file mandelbrot-png. cpp, which includes sample code for constructing RGB bitmaps in the png format. Modify it so that it draws a Mandelbrot set into the file out.png. Note that the mapping from escape counts to RGB values is arbitrary. Feel free to choose whatever transformation gives a compelling visualization.

[^1]\$ make mandelbrot-png
\$./mandelbrot-png
\$ display out.png
\$ convert out.png out.pdf
\$ evince out.pdf

[^0]: ${ }^{\dagger}$ part of the cmath library, described in http://www.cplusplus.com/reference/clibrary/cmath/
 †https://en.wikipedia.org/wiki/Lissajous_curve

[^1]: $\S_{\text {https://en.wikipedia.org/wiki/Mandelbrot_set }}$

