
Physics 750: Exercise 1
Thursday, August 24, 2017

1. Log in to the account on your computer. Open a terminal window to access the command line interface.
See what’s in your home directory, and check that your default shell is set to BASH.

$ ls -F
Desktop/ public_html/
$ mkdir phys750
$ ls -F
Desktop/ phys750/ public_html/
$ cd phys750
$ env | grep SHELL
SHELL=/bin/bash

2. Download the Exercise 1 instructions and source code from the class website. You can either do this from
the terminal as follows.

$ WEBPATH=http://www.phy.olemiss.edu/~kbeach/
$ curl $WEBPATH/courses/fall2017/phys750/src/exercise1.tgz -O
$ tar xzf exercise1.tgz
$ cd exercise1

3. Inside the exercise1 directory is a C++ source file gaussian.cpp and a makefile containing instruc-
tions to compile the program.

$ ls
gaussian.cpp makefile
$ head -n4 gaussian.cpp
// read in required header files
#include <iostream>
using std::cout;
using std::endl;
$ make gaussian
g++ -o gaussian gaussian.cpp
$ ls -F
gaussian* gaussian.cpp makefile

4. The program gaussian defines the function f (x) = Ce−ax
2 and outputs a three-column table of values

x f (x − 1) |C=2,a=1 f (x − 2) |C=1.5,a=2

with x ranging in discrete steps over the interval [−1.5, 4.5].

$./gaussian
-1.5 0.00386091 3.4346e-11

-1.494 0.00397835 3.7353e-11
-1.488 0.00409906 4.06175e-11

. . .

. . .
4.488 1.04074e-05 6.30087e-06
4.494 9.98039e-06 5.93522e-06
4.5 9.57023e-06 5.58998e-06

5. The program output can be redirected to a file (using >) and viewed with gnuplot.

$./gaussian > curves.dat
$ gnuplot
> plot[-1.5:4.5] "curves.dat" using 1:2 with lines
> replot "curves.dat" using 1:3 with lines

6. Superimpose the arithmetic and geometric means of the two curves.

> replot "curves.dat" using 1:(0.5*($2+$3)) with lines
> replot "curves.dat" using 1:(sqrt($2*$3)) with lines

7. See if you can figure out what’s going on here.

> a1=1.0; C1=2.0; x1=1.0;
> a2=2.0; C2=1.5; x2=2.0;
> plot "curves.dat" using 2:3
> replot C2*exp(-a2*(x1+sqrt(-log(x/C1)/a1)-x2)**2)
> replot C2*exp(-a2*(x1-sqrt(-log(x/C1)/a1)-x2)**2)
> quit

8. Use emacs (or your favourite text editor) to modify the gaussian.cpp program file. Change the function
to f (x) = Ce−a |x |. (You might want to use the fabs function.†) Recompile, and plot everything again.

$ emacs gaussian.cpp &
$ make

9. A Lissajous figure‡ refers to a planar trajectory that is harmonic in two orthogonal directions. This is
something you might have seen traced out on an oscilloscope.
Write a C++ program that computes the quantities

x(t) = A cos(at)

y(t) = B cos(bt + δ)

at 100N equally spaced points in the range 0 < t < 2πN × max(1/a, 1/b) and outputs the results in
three-column format t, x(t), y(t) to the standard output stream (stdout, referred to in C++ as cout). Have
your program require six command line arguments: the first five interpreted as floating-point numbers
(with the atof function, say) and used to set the values of A, B, a, b, δ; the sixth interpreted as an integer
(with atoi) and assigned to N . The program output can then be written to a file via redirection (>) and
viewed with gnuplot.

$ make lissajous
$./lissajous 2.6 1 3 2 0.5 2 > curve1.dat
$./lissajous 1 1 1.1 1.2 0 35 > curve2.dat
$ gnuplot
> plot "curve1.dat" using 2:3 with lines
> plot "curve2.dat" using 1:($2+$3) w l, 2*cos(0.05*x), -2*cos(0.05*x)
> quit

If you’ve done everything correctly, you should see something like this:
†part of the cmath library, described in http://www.cplusplus.com/reference/clibrary/cmath/
‡https://en.wikipedia.org/wiki/Lissajous_curve

http://www.cplusplus.com/reference/clibrary/cmath/
https://en.wikipedia.org/wiki/Lissajous_curve

(a) Convince yourself that a Lissajous figure is closed iff a/b is a rational number.
(b) How does the ratio a/b control the shape of the curve?
(c) In the case a = b, how does the phase shift δ effect the curve?
(d) Investigate the beats produced when the two sinusoidal components—with equal amplitudes and

slightly different frequencies—are superimposed. In other words, plot z(t) = x(t) + y(t) versus t for
A = B and |a − b| � 1. The result is a product of a slowly varying envelope function and a rapidly
varying beat function:

cos(αt) + cos(βt) = 2 cos
[1

2 (α + β)t
]

cos
[1

2 (α − β)t
]

10. The Mandelbrot set§ consists of the bounded orbits of the complex-valued recurrence relation

zn+1 = z2
n + c, z0 = c ≡ x + iy

The set is typically visualized as a plot in the x-y plane, with each point corresponding to an unbounded
orbit coloured according to its rate of escape.
Write a C++ program that implements the following algorithm. Scan over a fine grid of c values such
that its real and imaginary parts range over x ∈ [−2, 1] and y ∈ [−1, 1]. At each point, run the recurrence
relation until |zn | > R or n > N . I suggest the values R = 3 and N = 500. You’ll have to make a
decision whether to represent each complex number as two doubles or as a single complex<double>
class object.
Output the escape counts n as a rectangular table of values to stdout, and then plot the Mandelbrot set
using gnuplot:

$ make mandelbrot
$./mandelbrot > mandelbrot.dat
$ gnuplot
gnuplot> set pm3d map
gnuplot> splot "mandelbrot.dat" matrix

11. Take a look at the file mandelbrot-png.cpp, which includes sample code for constructing RGB bitmaps
in the png format. Modify it so that it draws a Mandelbrot set into the file out.png. Note that the
mapping from escape counts to RGB values is arbitrary. Feel free to choose whatever transformation gives
a compelling visualization.

§https://en.wikipedia.org/wiki/Mandelbrot_set

https://en.wikipedia.org/wiki/Mandelbrot_set

$ make mandelbrot-png
$./mandelbrot-png
$ display out.png
$ convert out.png out.pdf
$ evince out.pdf

