
Physics 750: Assignment 3
due Tuesday, November 14, 2017

Your task in this assignment is to simulate a two-dimensional gas of noninteracting fermions living on a
honeycomb lattice. This can be viewed in twoways. It’s reasonable both as amodel of electrons in graphene—the
carbon membrane that serves as the building block for nanotubes and buckyballs—and as a model of massless,
relativistic particles treated using a spatial discretization in the manner of lattice QCD.

For concreteness, we make the lattice finite and periodic with N = 2L2 sites covering an area
√

3L × 3
2 L.

The Hamiltonian of this system can be expressed at the single-particle level as a real, symmetric N × N matrix
whose rows and columns are indexed by the sites of the lattice. The matrix has nonzero entries only where two
sites are connected:

Hi j =



−t if sites i and j and neighbours
0 otherwise

For the infinite honeycomb sheet, this leads to an energy

E(k) = ±

√
3t
2
|ka | +O(k2

xa2, k2
ya2)

that—in the long-wavelength limit at least—disperses linearly with momentum ~k (as measured from the node
of the light cone). In particular, so long as λ = 2π/k = 2π/|k | is much larger than the distance a between lattice
sites, the system is largely unaware of the underlying spatial discretization. In the conventional vacuum, the
antiparticle (−~kc) branch is occupied and the particle (+~kc) branch is empty (corresponding to a half-filled
band in graphene).



To start, download and unpack theassignment3.tar.gz archive from the classwebsite. In theassignment3
directory there is a file named graphene.cpp. If you compile it and run the resulting program, you’ll get an
Encapsulated PostScript version of the figure on the previous page.
$ make
g++ -o graphene graphene.cpp -O2 -ansi -pedantic -Wall
$ ./graphene
$ display config.eps // or "open config.eps" on MacOS
$ convert config.eps config.pdf
$ evince config.pdf // or "open config.pdf" on MacOS

Add to graphene.cpp whatever code is necessary to complete the following questions.

1. (5 points) The first action in main is a call to build_honeycomb_lattice(), which populates the
container hopping_list with site index pairs that encode the nearest-neighbour connectivity of the
lattice. Find the definition of hopping_list and trace back the class definitions until you understand
exactly how it is structured.
To construct the Hamiltonian, walk through hopping_list and for each element assign the relevant
entry in H. You should work in units where t = a = 1. Note that H is a linear array into which the
Hamiltonian matrix must be flattened. Do so in a way that is consistent with one of the packed storage
schemes supported by LAPACK.

2. (15 points) Complete the eigensolve function so that it correctly solves the eigenvalue problem for H
using LAPACK’s dspevd routine, putting the resulting eigenvalues and eigenvectors into Eval and Evec.
You’ll have to assign various kinds of temporary storage. It’s fine if your function destroys H in the process.
If you’ve done everything correctly, you should be able to run the code without receiving any warnings
like the following.

$ ./graphene 2
There’s a problem with the eigensolver

3. (5 points) Make a histogram of the spectrum of eigenenergies for each of the lattice sizes L = 10, 20, 30, 40.
Compare these to the density of states on the infinite lattice:

D(E) =
∑
k,±

δ(E ± |E(k) |) =

√
3

3πt2 |E |
(
1 +

E2

3t2 +
5E4

27t4 +
31E6

243t6 + · · ·
)
.

What you’re seeing here are energy slices of the light cone for particles (E > 0) and antiparticles (E < 0).

$ ./graphene 3
$ gnuplot
> plot "dos.dat" using 1:2 w l

4. (5 points) The last section of code in main computes the overlap of a guassian packet with each of the
empty particle levels. It then reconstructs the wavefunction and propagates it forward in time. In the
default setup, the wavepacket has no initial momentum, and it dies away by spreading out into incoherence.
Compile with L = 30 and watch the movie that is generated.

$ ./graphene 4
$ gnuplot movie.gp

Explore the evolution of the wavepacket for different values of the variables kx and ky. Write code that
computes the average position of the wavepacket as a function of time. Create a plot showing distance
travelled versus time for initial momentum kx = ηK1 cos θ and ky = ηK1 sin θ (for K1 = 4π/3

√
3) and

with θ taking on a few values between 0 and 2π and η a few between 0.1 and 0.7. How does the wavepacket
speed (the scalar group velocity) depend on θ and η? Provide an explanation for what you observe.

http://www.netlib.org/lapack/lug/node123.html
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lapack-3.1.1/html/dspevd.f.html

