
Physics 750: Assignment 1
due Tuesday, September 19, 2017

In this assignment, you’ll be exploring the FHP lattice gas introduced by Frisch, Hasslacher, and Pomeau
[Phys. Rev. Lett. 56, 1505 (1986)]. The automaton consists of a regular triangular array of sites holding identical
particles of unit mass that are either stationary or moving with one of six discrete velocities of equal magnitude
directed along the lattice links. No more than one particle per site can exist in any of these seven states. Particle
updates are carried out in two passes. The first is a propagation step in which each non-stationary particle is
made to move along its velocity vector to an adjacent site. The second is a collision step in which the following
net-momentum-preserving reconfigurations are carried out.

In the figure above, black sites are occupied by a stationary particle, and white sites are unoccupied. The
occupancy of the grey sites is unspecified and may be zero or one. When there are two possible reconfiguration
pathways—as is the case for the two- and four-velocity collisions—one of the branches is chosen randomly with
probability 1/2.

To start, download and unpack the assignment1.tgz archive from the class website. The assignment1
directory contains a program file lattice_gas.cpp that (partially) implements an extension of the FHP model
that allows for reflection off fixed obstacles. In the code, the triangular lattice is sheared so that it can be
represented as a square lattice (which is itself stored as a one-dimentional C array in row-major order). In this
geometry, two of the nearest neighbours to each site are connected diagonally across a square plaquet. The
six nearest-neighbour directions are described by an enumerated type ver_t and named for the corresponding
compass points:
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The program makes use of a compressed storage format. The state of each lattice site is stored in a single
byte, with each of the eight bits flagging the presence of a velocity, stationary particle, or obstacle.

0x010x020x040x080x100x200x400x80

http://link.aps.org/doi/10.1103/PhysRevLett.56.1505


Issuing the commands

$ make
g++ -o lattice_gas lattice_gas.cpp -O2 -ansi -pedantic -Wall
g++ -o lattice_gas_openGL lattice_gas.cpp -O2 -ansi -pedantic -Wall ...
$ ./lattice_gas_openGL
Usage: lattice_gas_openGL (setup=0,1,..,4) (0 < concentration < 1)

from inside the Assignment1 directory will build and execute the program. Note that two executables are
produced—one that outputs to the terminal only, and another that animates the resulting hydrodynamics in
a separate window using the openGL library. Both programs require that two command line parameters be
specified by the user. The first selects one of five simulation modes: (0) uniform gas; (1) circular dilution
wavefront; (2) linear dilution wavefront; (3) enclosed container with unequal pressures inside and outside; (4)
fluid flow past an elliptical barrier. The second parameter controls the number density of the fluid.

1. (4 points) The lattice connectivity is defined through a collection of functions named indexN, indexE,
. . . , indexNW. Implement these functions, making sure that the boundary conditions are properly defined
for the triangular lattice. (Remember that, with regard to the internal representation, the lattice has been
sheared so that it coincides with an orthogonal grid. This means that wrap-around in one of the directions
is no longer trivial.) Simulate a uniform gas at extremely low densities and verify by visual inspection
that each particle correctly wraps around the edges.

2. (4 points) The function report writes the total particle number and the total x- and y-directed momenta
to the terminal after each time step. The particle number at each site, computed with occupancy, is
accumulated in an integer variable n. The momenta, stored as double-precision floating-point variables
px and py, are incremented using the inc_momentum function. Write the body of the occupancy and
inc_momentum functions. (Remember that the occupancy function counts all particles, both moving
and stationary!) Verify that n, px, and py are conserved quantities.

$ ./lattice_gas 0 0.3
860178 293 -289.252
860178 293 -289.252
860178 293 -289.252
860178 293 -289.252
860178 293 -289.252
860178 293 -289.252
860178 293 -289.252

3. (6 points) Extend the collision function to account for four-velocity collisions. Check that n, px, and
py are still conserved.

4. (3 points) Run lattice_gas in modes 1 and 2 for various values of the concentration. How does the
propagation of the disturbances depend on the particle density? How does the behaviour change when
you turn off all collisions? Give me a brief physical explanation for your observations.

void animate(int)
{

propagate();
//collision();
if (is_flowing) flow();

report();

glutPostRedisplay();
glutTimerFunc(delay,animate,0);

}



5. (5 points) Code up a special case for mode 3 so that the particle number and momenta inside and outside
the container are counted separately. Write to the terminal in six-column format.

cout << setw(15) << n_in << setw(15) << n_out
<< setw(15) << px_in << setw(15) << px_out
<< setw(15) << py_in << setw(15) << py_out << endl;

Run the simulation in mode 3 and dump the output to a file:

./lattice_gas 3 0.65 > outfile.dat

Make a plot of the n_in and n_out values versus the simulation clock. Do the same for px and py.
Comment on the behaviour of the curves, paying special attention to the oscillations and the decay envelope.
Use fits to extract the relevant time constants. Explain the (physical or implementation-dependent) origin
of these phenomena.

*6. (7 points) Run the simulation in mode 4 with concentration 0.1. Roughly determine the time needed
for the flowing liquid to reach its steady state. Measure the steady-state velocity and occupation number
fields, time-averaged and coarse-grained over several lattice sites. Produce a vector plot of the resulting
smoothed velocity field and a density plot of the smoothed occupation number field. (Inspect the files
view4b.gp and view4c.gp in the solutions to Exercise 3 for a gnuplot template; and have a look at
mandelbrot-png.cpp and its makefile in Exercise 1 for an example of how to use pnglib.)


