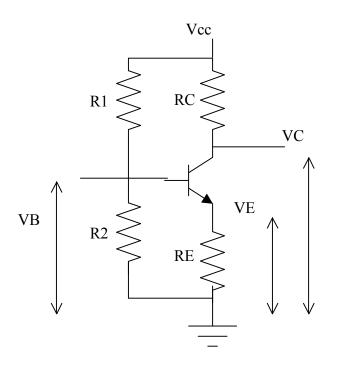
Designing a the Common Emitter Amplifier -Handout

The transistor can be used as a voltage amplifier. R_1 , R_2 , R_c , R_E , must be selected based on design criteria: Input impedance, Output Impedance, Gain.



- 1. The input signal is AC coupled to the amplifier. The input capacitor blocks the DC. There is stray capacitance in the circuit which we ignore at low frequency.
- 2. First select the output impedance. $R_C = 4700\Omega$.
- 3. Then choose the voltage drop across V_C to be half the supply voltage $V_C = 15V/2 = 7.5V$. This allows the AC input signal to swing full range of +-7.5V
- 4. Calculate the nominal current thru $I_C = 15V V_C / R_C = 7.5 / 4.7K = 1.6mA$
- 5. Choose $\mathbf{R}_{\mathbf{E}} = \mathbf{R}_{\mathbf{C}}/10 = 470 \Omega$ for a gain of 10! $\mathbf{Zin} = \beta \mathbf{R}_{\mathbf{E}}$
- 6. To set the base voltage divider note that $V_E = I_E R_E \sim I_C R_E = (1.6 \text{mA})(470 \Omega) = 0.75 \text{V}$
- 7. We have that $V_B = V_E + \Delta V b = 0.75V + 0.6V = 1.35 V$
- 8. To limit the power supply current through the base choose $R_2 < Zin \sim (1/10) \beta R_E$ Let $R_2 = (\beta / 10) R_E = 10 R_E = 4700 \Omega$ (rule of thumb!)

9. Then R₁ can be calculated by considering the current and voltage drop on R₁. $I_2 = V_B / R_2 = 1.35 V/4700 \Omega = 0.29 mA$ and $I_B = I_C / \beta = 0.016 A$ $I_1 = I_2 + I_B = 0.31 mA$ $\mathbf{R_1} = (15V - V_B) / I_1 = (15.0 - 1.35) V/.30 e - 3A = \sim 46 k\Omega$ (Use 47 k Ω)

Chapter-8 Homework

#1- Design a common-emitter amplifier with output impedance $10K\Omega$ and a gain of 100 using a transistor of β =200 and a 24V power supply.

