| Name: | Section: | Date: | | |-------|----------|-------|--| ## Datasheet - Exp 10: Moments of Inertia ### Objective To determine the moment of inertia of a rotating system, alter the system, and accurately predict the new moment of inertia . ### Theory Moment of Inertia (I) can be understood as the rotational analog of mass. Torque (τ) and angular acceleration (α) are the rotational analogs of force and acceleration, respectively. Thus, in rotational motion, Newton's Second Law: F = ma becomes: $\tau = I\alpha$. #### **PROCEDURE** # Part 1: Moment of Inertia of apparatus with no additional masses. - 1. Using the vernier caliper, measure the diameter of the axle around which the string wraps. Calculate the radius of the axle. - 2. Holding the disk, place 50 grams (mass hangers are 50 grams) on the string. Measure the distance from the bottom of the mass hanger to the floor. - 3. Release the disk, be sure not to impart an initial angular velocity. Using the stopwatch, measure the time until the mass hanger reaches the floor. - 4. Repeat *Step 3* five times. Record the times in a table and calculate the average time. - 5. Using the average time, calculate the **linear acceleration** (a) of the masses with the kinematic equation. - 6. Calculate the **angular acceleration** (α) of the disk using $\alpha = \frac{a}{r}$. Refer to *Step 1* for r. - 7. Calculate the **tension** (T) on the string, Eq. 9.4. (The total force (ma) is equal to the force of gravity minus tension). - 8. The applied torque on the spinning disk is provided by the tension of the string. Use the values from Step 7 and the radius of the axle to calculate the torque (τ) . - 9. Repeat Step 2 through Step 8 for 100 grams on the mass hanger in addition to the mass from Step 1. - 10. Using *Graphical Analysis*, plot the net torque vs. angular acceleration for both situations. **Be sure** to enter the origin as a data point. Determine the moment of inertia of the disk, I_0 . # Part 2: Moment of Inertia of apparatus with additional masses. - 11. Measure the distance from the center of the disk to the outer set of tapped holes (Where you will attach the three large masses). - 12. Attach the three masses to the disk. These masses are 1.35kg each. Calculate the new moment of inertia, I_{new} , for the system (you may treat the added masses as point masses, use I_0 from part 1). - 13. Repeat Step 2 through Step 10 for the altered system. Calculate the percent difference between the experimental value and the theoretical (calculated) value. You should have 2 graphs to include in your lab report. When determining independent and dependent and variables, consider what you changed between Part 1 and Part 2. | r_{axle} : | | | | | | | | | |--------------------|----------------------------|--|---------------|-----------------|--------------------|--------------------------|--|--| | y_{floor} | : | | | | | | | | | R_{mas} | ses : | | | | | | | | | Raw | data: | | 1 | | | T | ٦ | | | T | rial | t-Part 1(a) (s) | t-Part 1(b | o) (s) | t-Part 2(a) (s) | t-Part 2(b) (s) | | | | | 1 | | | | | | | | | | 2 | | | | | | | | | | 3 | | | | | | | | | | 4 | | | | | | | | | | 5 | | | | | | | | | Ave | erage | Calc | <u>ulated</u> | Data: | | | I | experimental I_0 : | | | | | Part 1(a) Part 1(b) Part 2 | | Part 2(a) | Part 2(b) | | Use this to calcula | ate Theoretical I_{new}) | | | a | | | | | | u <i>(* 1 T</i> | | | | $\mid \alpha \mid$ | | | | | | neoretical I_{new} :_ | | | | T | | | | | F | Experimental I_{new} : | | | | τ | | | | | | | | | | (Be s | ure to i | include units in your lab report!) Percent Difference I_{new} : | | | | | | | | Ques | stions | | | | | | | | | 1. W | hat are | the units for Te | orque, Moi | \mathbf{ment} | of Inertia, and | Angular Accele | eration? Show all work. | | | 2. If | the Toi | rque applied to a | a rigid body | is dou | bled, what happ | ens to the Momen | nt of Inertia? | | | | | you need to calc
my trials? | culate accele | ration | to determine I_0 | ? Could you have | calculated a theoretical I_0 without | | | | ere any
ur resu | | in this expe | eriment | c? What are they | 7? Do you believe | they may have significantly altered | | D_{axle} :_____