Experiment 9: Moments of Inertia

Figure 9.1: Beck's Inertia Thing with masses

EQUIPMENT

Beck's Inertia Thing Vernier Caliper 30cm Ruler Paper Clips Mass Hanger 50g Mass Meter Stick Stopwatch

Advance Reading

Text: Torque, Rotational Motion, Moment of Inertia.

Objective

To determine the moment of inertia of a rotating system, alter the system, and accurately predict the new moment of inertia .

Theory

Moment of Inertia (I) can be understood as the rotational analog of mass. Torque (τ) and angular acceleration (α) are the rotational analogs of force and acceleration, respectively. Thus, in rotational motion, Newton's Second Law:

$$F = ma (9.1)$$

becomes:

$$\tau = I\alpha. \tag{9.2}$$

An object experiencing constant angular acceleration must be under the influence of a constant torque (much like constant linear acceleration implies constant force). By applying a known torque to a rigid body, measuring the angular acceleration, and using the relationship $\tau = I\alpha$, the moment of inertia can be determined.

In this experiment, a torque is applied to the rotational apparatus by a string which is wrapped around the axle of the apparatus. The tension T is supplied by a hanging mass and found using Newton's second law.

Figure 9.2: String wrapped around axle.

If we take the downward direction as positive, and apply Newton's second law, we have:

$$\Sigma F = mg - T = ma \tag{9.3}$$

so the tension is

$$T = m(q - a) \tag{9.4}$$

The rotational apparatus has an original moment of inertia I_0 with no additional masses added. When additional masses are added, it has a new moment of inertia I_{new} . The added masses effectively behave as point masses. The Moment of Inertia for a point mass is $I_p = MR^2$, where M is the mass and R is the radius from the point about which the mass rotates. Thus, the relationship between I_0 and I_{new} is given by

$$I_{new} = I_0 + I_{p1} + I_{p2} + \dots = I_0 + M_1 R_1^2 + M_2 R_2^2 + \dots$$
(9.5)

where M is an added mass and R is the distance of this mass from the center of the wheel (i.e. from the axis of rotation). So, if multiple masses are added at the same radius, we have

$$I_{new} = I_0 + \Sigma I_p = I_0 + (\Sigma M)R^2$$
 (9.6)

In comparing this to Eq. 9.1, we consider that all masses, along with the disk, experience the same angular acceleration. If we were looking for the Force on a system of connected masses all experiencing the same acceleration, we would simply sum the masses and multiply by acceleration (i.e. a stack of boxes being pushed from the bottom). Similarly, when looking for the Torque on a system, we must sum the moments of inertia and multiply by angular acceleration.