

Top Quark Physics with CMS

Rahmat Rahmat
University of Mississippi
(on behalf of CMS Collaboration)

The 44th Fermilab Users Meeting 2011

- Top Physics
- t̄t Cross Section Dilepton Channel
- t̄t Cross Section L+jets Channel
- Single Top Cross Section
- t̄t Invariant Mass
- Top Mass
- Charge Asymmetry
- Summary

Top Quark Physics

- Precise Standard Model measurements
 - Heaviest known elementary particle
 - Constraint on Higgs mass
- A Window to new physics
 - Many models couple preferentially to top
 - New particles may decay to top
- Main background in many new physics scenarios(e.g. SUSY)
- Very useful to calibrate detector
 - Jet energy scale
 - b-tagging efficiency

Top Production

Pair production in 7 TeV pp collisions:

- BR(t->Wb) ≈ 1 in Standard Model
- Analysis strategy depends on W decay modes

CMS Detector

SILICON TRACKER
Pixels (100 x 150 μm²)
~1m² 66M channels
Microstrips (50-100μm)

~210m2 9.6M channels CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) 76k scintillating PbWO, crystals PRESHOWER Silicon strips ~16m2 137k channels STEEL RETURN YOKE ~13000 tonnes SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A FORWARD CALORIMETER Steel + quartz fibres HADRON CALORIMETER (HCAL)

Total weight : 14000 tonnes Overall diameter : 15.0 m

Overall length : 28.7 m Magnetic field : 3.8 T MUON CHAMBERS

Barrel: 250 Drift Tube & 500 Resistive Plate Chambers Endcaps: 450 Cathode Strip & 400 Resistive Plate Chambe

Brass + plastic scintillator

Top Quark Candidate

tt Cross Section at CMS

- First publication: A first measurement at 3.1 pb⁻¹ in the dileptonic channel:
 - TOP-10-001: «First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at Vs = 7 TeV», Phys. Lett. B695 (2011) 424
- In 2010, Results from 2010 data are based on dataset corresponding to $L = 35.9 \text{ pb}^{-1}$ of data at $\sqrt{s} = 7 \text{ TeV}$.
 - TOP-10-002: «Measurement of the tt Pair production Cross Section at √s = 7
 TeV using the Kinematic Properties of Lepton + Jets Events»
 - TOP-10-003: «Measurement of the tt Pair Production Cross Section at √s = 7
 TeV using b-quark Jet Identification Techniques in Lepton + Jets Events»
 - TOP-11-002 (submitted to JHEP, arXiv:1105.5661): «Measurement of the tt production cross section and the top quark mass in the dilepton channel in pp collisions atvs = 7 TeV»

t t Cross Section - Dilepton Channel (submitted to JHEP, arXiv:1105.5661)

- Event Selection
 - two opposite charge leptons:
 - p_T > 20 GeV/c, |η| < 2.5 (2.4) for e (μ), Isolated in tracker and calorimeter
 - invariant mass selection:
 - M_" > 12 GeV/c2, M_" ≠ [91 ± 15]
 - jets selection:
 - corrected Jet, $p_T > 30 \text{ GeV/c}$, $|\eta| < 2.5$
 - For each channel, for 2 jets no b-tags, 2 jets 1 b-tag and 1 jet no b-tags
- Main backgrounds after leptonic selection :
 - Drell-Yan → II: main background,
 - rejected by Z veto, jets and E_{τ} , estimated from data
 - W+Jets, semi-lept. tt, QCD: from non-W/Z decays, estimated from data
 - Single top tW, diboson, Z→ττ: small cross-sections, estimated from MC
- Very clean channel, thanks to b-tagging
 - Cut and count experiment
- Event counting with dedicated data-driven techniques for the estimation of background contributions in e^+e^- , $\mu^+\mu^-$, and $e^\pm\mu^\mp$ channels
- Combination taking correlation into account using Best Linear Unbiased Estimated

$$\sigma_{\rm (ft)}$$
 = 168 \pm 18(stat) \pm 14(sys) \pm 7(lum) pb

- Measurement without b-tagging
- Simultaneous binned likelihood fit to
 - Missing ET with 3 jet
 - discriminate QCD from true W decay
 - M3 with ≥ 4 jets
 - M3 is invariant mass of 3 jets with max Σ P_T
 - separates top from other events with real W decays
- M_T(W) shows good agreement with data
- Combined measurement
 - $\sigma_{tt} = 173^{+39}_{-32}(\text{stat.} + \text{syst.}) \pm 7(\text{lumi.}) \text{ pb}$
- Compatible with other measurement

t t Cross Section in the Lepton+Jets Channels with b-Tagging (TOP-10-003)

- Measurement with b-tagging
- Event Selection:
 - one lepton (with second lepton veto): $p_T > 30$ (20) GeV/c, |η| < 2.5 (2.1) for e (μ), Isolated in tracker and calorimeter
 - jets selection: corrected Jet, $|\eta| < 2.4$
 - ∠T and b-tag selection: ∠T > 20, Secondary Vertex
- Simultaneous fit of
 - Secondary Vertex Mass (from tracks associated with the vertex with a pion mass assumption)
 - Number of jets and b-tagged jets

Combined Measurement:

$$\sigma_{t\bar{t}} = 150 \pm 9 \, (\mathrm{stat.}) \pm 17 \, (\mathrm{syst.}) \pm 6 \, (\mathrm{lumi.}) \, \, \mathrm{pb}$$

tt Cross Section Combined

- Combined measurement has precision of 12%
- Very good agreement with approximation NNLO theory
- Comparable to world average

Single Top Cross Section (CMS-PAS TOP-10-008)

- Event Selection
 - Trigger: Single μ/e
 - Existence of a good primary vertex
 - Exactly one muon (electron)
 - Exactly two anti-kt 5 Particle Flow jets with
 - Transverse W boson mass > 40 GeV (50 GeV)
- Still rather small signal to background ratio:
- Complementary methods
 - Exploit two characteristic features of Single top quark production (2D analysis)
 - Use MVA technique Boosted Decision Trees for further separation (BDT analysis)

- CMS combined result
 - $\sigma(t) = 84 \pm 30 \, \text{pb}$
- Significance observed (expected)

2D fit: 3.7 (2.1)BDT: 3.5 (2.9)

$$|V_{tb}| = \sqrt{\frac{\sigma^{exp}}{\sigma^{th}}} = 1.16 \pm 0.22(exp) \pm 0.02(th)$$

For $0 \le |V_{tb}|^2 \le 1$ (flat prior in $|V_{tb}|^2$): $|V_{tb}| > 0.69$ @95% CL (BDT analysis)

t Invariant Mass (CMS-PAS TOP-10-007)

- Reconstruction of m_{ft} done in 3 steps
 - reconstruction of leptonic W (with MET as $p_T(\mu)$)
 - 2 real solutions → keep both
 - imaginary solutions → modify MET
 - jet-parton association by χ² minimisation
 - 5 quantities used: m_{lep} (top), m_{had} (top), m_{had} (W), p_{T} (f t), H_{T} fraction
 - correct association in ~ 80% (in simulation)
 - kinematic fit to improve resolution
 - $m_{top} = 172.5 \text{ GeV/c2}$
 - $m_W = 80.4 \text{ GeV/c2}$
- Looking for narrow resonances
 - Model independent
- Lepton+jets channels
 - e^{\pm} + jets
 - $-\mu^{\pm}$ + jets
- No significant signal observed

Top Quark Mass Measurement in the Dilepton Channels (submitted to JHEP, arXiv:1105.5661)

• Event Selection:

- Inclusive single lepton trigger
 - muon with $p_T>15$ GeV/c ($\mu\mu/e\mu$) or electron with ET>17 GeV (ee/e μ)
- ≥ 2 leptons, p_T >20 GeV/c |η|<2.5
 - Isolated and promptly produced
- ≥ 2 jets, p_T >30 GeV/c |η|<2.5
 - Anti-kT (R=0.5), particle flow based algorithm
- MET > 30 (20) GeV for the ee/ $\mu\mu$ (e μ) channel

Evaluated using 2 methods

- fully kinematic analysis (KINb)
- analytical matrix weighting technique(AMWT)
- Largest systematics from jet energy scales
- CMS combined result

$$m_{top}$$
 = 175.5 ± 4.6(stat) ± 4.6(syst) GeV/c²

• Good agreement with world average

$$m_{top}$$
 = 173.1 ± 1.1 GeV/c²

Top Quark Mass Measurement in the Lepton+jets Channels (CMS-PAS TOP-10-009)

• Event Selection:

- Exactly one high p_T isolated lepton (electron $p_T > 30$ GeV, μ $p_T > 20$ GeV), loose 2nd lepton veto and four or more PF jets ($p_T > 30$ GeV).
- Particle flow jets and missing transverse energy are used to achieve the best expected mass resolution.

Using Ideogram method

- A constrained kinematic fit is used to reconstruct the complete kinematics of the event under the hypothesis that the event is a tt lepton+jets event
- A likelihood is calculated for each event in the data sample from the output of the kinematic fit
- The likelihood calculation takes into account all the possible assignments of jets to quarks in the ttlepton+jet event hypothesis, and considers the possibility that the event is a tt- event or a background event
- A joint likelihood fit over all events in the data sample is then used to extract the value of the top quark mass

'Fresh from the oven: approved yesterday!'

• Combination e+jets and μ +jets

$$m_{\rm t} = 173.1 \pm 2.1 ({\rm stat})^{+2.4}_{-2.1} ({\rm JES}) \pm 1.4 ({\rm other\ syst})$$
 GeV.

The most precise top mass measurement outside Tevatron

 Combination of dilepton and lepton +jets top mass using the BLUE (Best Linear Unbiased Estimate) method.

$$m_t$$
 = 173.4 \pm 1.9(stat) \pm 2.7 (syst) GeV

Charge Asymmetry (CMS-PAS TOP-10-010)

- Tevatron
 - Valence (anti-)quarks from certain direction
 - Forward-backward asymmetry
- LHC
 - gg fusion symmetric
 - asymmetry only from small qq fraction
- $A_C = (N^+ N^-)/(N^+ + N^-)$ N^+ / N^- are the number of events with positive /negative values of $|\eta_{top}| - |\eta_{antitop}|$ Predicted in SM $A_C = 0.0130(11)$
- Would indicate BSM if there is deviation e.g. axigluon
- Measured at CMS $A_c = 0.060 \pm 0.134 (stat) \pm 0.026 (sys)$

Summary

- CMS is a new Top Factory
- With only 36 pb⁻¹ we have:
 - tt cross section (±12%)
 - Single top cross section (±36%)

Recorded 503.11 pb

- The most precise top mass measurement outside Tevatron
- t̄t invariant mass (-> limits for Z' production)
- Charge asymmetry (competitive with Tevatron end of 2011?)
- Today, June 2, 2011 we have more than 500 pb⁻¹ and many golden opportunities in Top Physics