Photo Electric Effect in a Metal

When light of various wavelengths hits the surface of a metal electrons can be ejected with kinetic energy \(KE = hf - \phi \), where \(\phi \) is the ionization energy (energy necessary to overcome the Coulomb attraction of the metal.) The most energetic electrons will correspond to \(\phi_{\text{min}} = W \), defined as the work function of the metal. (also the Fermi energy).

If one applies a stopping voltage to these electrons on can measure the work function and Plank's constant by plotting \(V_S \) vs \(f \).

\[
e V_S = KE_{\text{MAX}} = hf - W
\]

Photoelectric Effect

1) Record the stopping voltage at three frequencies RGB by zeroing the picoAmmeter.
2) Graph \(V_S \) vs \(f \) and perform a linear fit.
3) Determine Planck's constant \(h \) and the work function \(W \) of the metal photocathode \(w \pm \)-errors.
4) Identify the metal.
5) Explain why the photocurrent is zero and independent of light intensity when \(hf < W \).