1. Define diffraction. (1 pt)

2. Define interference. (1 pt)

3. Calculate the wavelength of light, \(\lambda \), in Fig. 29-2 by assuming the diagram is to scale. The steps are as follows (put calculator in radian mode): (4 pts)
 - Determine \(\phi \) by measuring \(W \) and \(D \) from the diagram (note that \(2 \tan \phi = W/D \))
 - Determine the wavelength by using \(\phi = \frac{\lambda}{d} \) (d is slit width, \(\phi \) is in radians).
 - Show all work and include all measured dimensions.

4. Calculate \(\lambda \) in Fig. 29-3 by assuming the diagram is to scale. Use \(\lambda = \frac{dy}{mD} \) (assume \(m=1 \)). Note that d is slit spacing here. Show all work and measured dimensions. (4 pts)