Experiment 1
Measurement

Advanced Reading
(Serway & Jewitt 8th Edition) Chapter 1

Equipment

• Vernier caliper
• stopwatch
• 30 cm ruler
• meter stick
• wooden block
• metal object
• Dial-o-gram balance
• masses of various values
• 5 circular objects of various sizes

Objectives

In this experiment you will: (1) learn the proper usage of a ruler, meter stick, Vernier caliper, stopwatch, and Dial-o-gram balance, (2) determine the volume and density of an object while following the rules of uncertainty propagation, and (3) learn to use graphics software by determining the relationship between the circumference of a circle and its diameter.

Theory

The fundamental quantities of mechanics are length, mass, and time. The SI units for these quantities are the meter (m), kilogram (kg), and second (s), respectively. All other mechanical quantities can be stated in terms of these quantities. For example, the unit for force in the SI system is the Newton which is 1 N = 1 kg m/s². In terms of fundamental quantities, a Newton is [mass][length]/[time]².

In the physics laboratory it is important to know how to measure these quantities with precision and accuracy, and also to know when to do so. For example, it is sometimes appropriate to do a "back-of-the-envelope" calculation based on crude measurements to test a hypothesis.

In this experiment, you will use a variety of methods to measure the fundamental quantities of length, mass, and time (Fig. I-1). You will then examine the inherent uncertainty of the different measurement methods and learn to propagate these uncertainties.

Procedure

Part A. Estimation of Fundamental Quantities

Time

1. Estimate a 30 second time interval while your lab partner uses the stopwatch to time you. (A good way to do this is to tap your foot, trying to establish a 1 second rhythm.) Repeat this process for your lab partner. Next, estimate a one minute interval.

2. Calculate the percent error of the estimated times from the actual times. See the "General Laboratory Introduction" for a discussion of percent error.

Length (distance)

3. Close your eyes and hold out your hands to estimate one meter. Have your lab partner measure this length with the meter stick. Repeat the process for your lab partner. Calculate the percent error of your estimated meter from the actual meter.

Mass

4. With your eyes closed, have your lab partner place a known mass in your hands. Guess the mass in grams (1/1000 of a kilogram). Do the same for your lab
partner. Repeat this process with several different masses. Calculate percent error.

Part B. Measurement of fundamental quantities using more sophisticated techniques

5. Using the 30 cm ruler, measure the length, width, and height of the wooden block. Estimate to a tenth of the smallest scale on the ruler. These measurements should be done by each lab partner. Calculate the block's volume using the average values of the length, width, and height. Your results should have the appropriate significant figures and include the propagated uncertainties. See section of text on significant figures.

6. Measure the mass of the wooden block with the Triple Beam balance. (zero the balance before you start). Calculate the density of the block using the volume from part 5.

7. Using the Vernier calipers, measure all the dimensions needed to calculate the volume of the metal object. Each lab partner should make their own separate set of measurements. Calculate the volume of the object using the average values.

8. Measure the mass of the metal object with the Triple Beam balance. Use this value and the volume obtained in part 7 to calculate the object's density. Be sure to record this density in your notebook because it will be needed for one of the questions.

Determination of π

9. Using the Vernier caliper measure the diameter D, in centimeters, of each of the five circular objects.

10. Using the ruler measure the circumference C, in centimeters, of each object. To do this, wrap a piece of string around each object and measure the length of string required to encircle the object.

11. Graph C vs. D from parts 9 and 10. Use the graphics software on the computers. Use the linear fit command from the menu to plot a best-fit line. Label both axes properly, including the units. Refer to the "General Laboratory Introduction."

Questions/Conclusions

1. Why is it important for you to have a "feel" for mass, length and time (or more specifically, kilograms, meters, and seconds)?

2. Based upon the density values found in a table of element properties, from what material is the metal object made? Calculate the percentage error of your density from the standard density. What could be responsible for the discrepancy?

3. What is the value of the slope of the graph in step 11 of the procedure? What is the significance of this number? Recall that the equation of a line is given by \(y = mx + b \), where is \(m \) the slope and \(b \) is the y intercept. Calculate the percentage error of your value from the true value. What could be responsible for the discrepancy?

Notes on Propagation of Uncertainties

“Most physical quantities cannot be measured in a single direct measurement but are instead found in two distinct steps. **First, measure** one or more quantities…. **Second,… use measured quantities to calculate** the quantity of interest….

When a measurement involves these two steps, the estimation of uncertainties also involves two steps. First we must estimate the uncertainties in the quantities directly
measured and then determine how these uncertainties “propagate” through the calculations to produce an uncertainty in the final answer.”

4. Using page A-6 through A-9 of online Appendix complete the following exercise on uncertainty propagation.

The true measurements of the calibration blocks pictured below are as follows:

2.540 ± 0.003cm, 5.080 ± 0.003cm, and 7.620 ± 0.003cm

Using the dimensions above, determine both the perimeter and area and their uncertainties of any one of the (6) sides of the block. Be sure and show all uncertainty calculations. Answers should be given in both absolute & Percent uncertainty.

This will be on the quiz!