TESTING GRAVITY WITH GRAVITATIONAL WAVES

Atsushi Nishizawa (Caltech)

Apr. 6, 2015,
colloquium @ University of Mississippi
OUTLINE

1. Test of General Relativity
2. Gravitational Waves
3. Polarization Test
4. Propagation Speed Test
GENERAL RELATIVITY

In 1915, Einstein proposed.

\[G_{\mu\nu} = 8\pi G T_{\mu\nu} \]

gravity (spacetime) matter

Spacetime is not solid object but dynamical one.
TEST OF GR IN THE SOLAR SYSTEM

perihelion shift of Mercury

[review: Clemence 1947]

prediction in Newtonian

$5557'' \cdot 0 / \text{century}$

observed value

$5599'' \cdot 7 / \text{century}$

GR correctly predicted the observed value.
(correction to Newtonian is $42'' \cdot 7 / \text{century}$)
TEST OF GR IN THE SOLAR SYSTEM

deflection of light

In 1919, firstly observed by Eddington et al.

Shapiro time delay

In 1968, firstly observed by Shapiro et al.
OBSERVATIONAL CONSTRAINT

deflection angle
(at the rim of Sun)

\[\delta \theta \approx \frac{1}{2} (1 + \gamma) \times 1.''75 \cdots \]

\[\gamma - 1 \leq 1 \times 10^{-4} \]

time delay
(Mercury - Earth)

\[\Delta t \approx \frac{1}{2} (1 + \gamma) \times 240 \mu\text{sec} \cdots \]

\[\gamma - 1 \leq 1 \times 10^{-5} \]

In GR \[\gamma = 1 \]

[Will 2014]
GRAVITY IS FULLY TESTED?

![Graph showing gravitational potential](image)

- Neutron Stars
- Black Holes
- Grav Prob B
- AGN
- Eclipse Hulse-Taylor
- Over the Horizon
- Moon
- Mercury

Gravity strength

- Weak
 - [Psaltis 2008]

Matter density (spacetime curvature)

Gravitational potential (potential depth)

Strong
WHY TESTING GRAVITY IS IMPORTANT?

- strong field regime (neutron star, black hole)
- dynamical property (gravitational waves)
- cosmological scale (dark matter, dark energy)
- quantum gravity theory (modification to gravity)
GRAVITATIONAL WAVES
WHAT IS A GRAVITATIONAL WAVE?

- distortion of spacetime that propagates with the speed of light
- produced by drastic change of gravitational fields (e.g. steller explosion, collision, oscillation)
- expected GW amplitude is extremely small
 \[h \sim 10^{-21} \quad @ \sim 100\text{Hz} \]

\[\sim 10^{-10} \, \text{m} \approx 1 \text{ hydrogen atom} \]
GW POLARIZATION MODES

\[\frac{T}{4} \quad \frac{T}{2} \quad \frac{3T}{4} \quad T \]

+ mode

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]

× mode

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]
INDIRECT EVIDENCE OF GW

- Indirect evidence from binary pulsar (PSR B1913+16)

 In 1993, Hulse & Taylor won the Novel prize.

 GWs should exist !!

- Not directly detected yet

 GW detectors
GW GENERATION IN LAB ??

\[L_{gw} = \frac{G}{5c^5} \langle \dddot{I}_{ij} \dddot{I}^{ij} \rangle \sim \frac{G}{5c^5} \frac{M^2 R^4}{T^6} \]

\(R = 2 \text{ m} \)

\(M = 100 \text{ kg} \)

\(T^{-1} = 100 \text{ Hz} \)

\[L_{gw} \sim 4 \times 10^{-27} \text{ erg s}^{-1} \]

\(h \lesssim 10^{-43} \)

at 1500 km away

Too small !! Impossible to detect.
GRavitational Wave Sources

Astrophysical
- NS binary
- BH binary
- supernova
- gamma-ray burst

Cosmological
- inflation
- phase transition
- cosmic string
GW DETECTORS (2015~)

- LIGO Hanford 4000m
- Virgo Italy 3000m
- LIGO Livingston 4000m
- KAGRA Japan 3000m
WHAT GRAVITATIONAL WAVES CAN PROBE?

Various modified gravity theories have been suggested. Those theories predict the properties of GWs different from GR.

- different phase evolution of GWs (different eq. of motion)
- additional GW polarizations (scalar & vector pols.)
- GW propagation speed different from c (massive graviton)

GW observation can be utilized for
- direct test of general relativity
- probe for the extended theories beyond GR

In the absence of detailed knowledge about correct gravity theory, a model-independent test is crucial.
POLARIZATION TEST
GW POLARIZATIONS

In general metric theory of gravity, 6 polarizations are allowed. [Eardley et al. 1973, Will 1993]

GW is propagating in the z direction.

6 polys. are classified into tensor, vector, and scalar modes, depending on the rotational symmetry about the propagation axis.

- **tensor**
 - (a) plus mode
 - (b) cross mode

- **scalar**
 - (c) breathing mode
 - (d) longitudinal mode

- **vector**
 - (e) vector-x mode
 - (f) vector-y mode
Response of a detector to GW propagating in a direction.

Definition of antenna pattern func.

\[F_A(\hat{\Omega}) = D_{ij} e^{ij}_A(\hat{\Omega}) \]

- \(D_{ij} \): detector tensor
- \(e^{ij}_A \): GW polarization tensor
ANTENNA PATTERN FUNCTION

(a) plus

(b) cross

(c) vector-x

(d) vector-y

(e) longitudinal (breathing)

interferometer
POLARIZATION DECOMPOSITION

[AN+ 2009, Hayama & AN 2013]

simple case
3 detectors & 3 polarization modes (+, ×, ⊙)

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{pmatrix}
=
\begin{pmatrix}
 F_1^+ & F_1^\times & F_1^\circ \\
 F_2^+ & F_2^\times & F_2^\circ \\
 F_3^+ & F_3^\times & F_3^\circ \\
\end{pmatrix}
\begin{pmatrix}
 h_+ \\
 h_\times \\
 h_\circ \\
\end{pmatrix}
+
\begin{pmatrix}
 n_1 \\
 n_2 \\
 n_3 \\
\end{pmatrix}
\]

detector data response functions GW amp. noise

\[
\begin{pmatrix}
 h_+ \\
 h_\times \\
 h_\circ \\
\end{pmatrix}
\approx
\begin{pmatrix}
 F_1^+ & F_1^\times & F_1^\circ \\
 F_2^+ & F_2^\times & F_2^\circ \\
 F_3^+ & F_3^\times & F_3^\circ \\
\end{pmatrix}^{-1}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{pmatrix}
\]
SPHERICALLY SYMMETRIC CORE COLLAPSE

There are many studies of simulation of spherically symmetric core collapse in the scalar-tensor theory

scalar GW

\[
h(t) = 1.25 \times 10^{-21} \left(\frac{M}{10M_\odot} \right) \left(\frac{10 \text{ kpc}}{R} \right) \left(\frac{40000}{\omega_{BD}} \right) \Phi(t)
\]

\[\Phi(t)\]

Time in the unit of \(4.93 \times 10^{-5} \left(\frac{M}{10M_\odot} \right)\)

\(~\text{several msec duration}\)
\[h_A = H_A \cdot x, \]

\[H_+ = \frac{1}{\det(M)} \left[(F_+ \times F_\circ) \cdot (F_\times \times F_\circ) F_+
- (F_\times \times F_\circ) \cdot (F_+ \times F_\circ) F_\times
+ (F_\times \times F_\circ) \cdot (F_+ \times F_\times) F_\circ \right], \]

\[H_\times = \frac{1}{\det(M)} \left[-(F_+ \times F_\circ) \cdot (F_\times \times F_\circ) F_+
+ (F_+ \times F_\circ) \cdot (F_+ \times F_\circ) F_\times
- (F_+ \times F_\circ) \cdot (F_+ \times F_\times) F_\circ \right], \]

\[H_\circ = \frac{1}{\det(M)} \left[(F_+ \times F_\times) \cdot (F_\times \times F_\circ) F_+
- (F_+ \times F_\times) \cdot (F_+ \times F_\circ) F_\times
+ (F_+ \times F_\times) \cdot (F_+ \times F_\times) F_\circ \right]. \]

\[M := F^T F. \]

In general,
\# of detectors > \# of polarizations.

overdetermined & complicated inverse problem
RECONSTRUCTION OF GW WAVEFORM

black dashed : injected GW signal, colored : reconstructed signal (SNR=6~27)

+ mode

× mode

○ mode
RECONSTRUCTION OF GW WAVEFORM

<table>
<thead>
<tr>
<th>reconstructed</th>
<th>H</th>
<th>L</th>
<th>V</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_+</td>
<td>23.3</td>
<td>8.3</td>
<td>9.6</td>
<td>26.7</td>
</tr>
<tr>
<td>h_\times</td>
<td>20.2</td>
<td>15.4</td>
<td>18.0</td>
<td>15.4</td>
</tr>
<tr>
<td>h_\circ</td>
<td>16.3</td>
<td>13.3</td>
<td>20.4</td>
<td>10.0</td>
</tr>
</tbody>
</table>

SNR of injected signal in each detector

SNR after reconstruction with a detector network

- SNRs of each detector depend on the source sky position and antenna pattern functions.
- After the reconstruction, SNR is slightly degraded due to less sensitive detector, but not much.
SUMMARY FOR POLARIZATION TEST

- GW polarizations can be used for the model-independent test of modified gravity theories.

- When N pols. signal exist in GW data from a point source, N detectors can reconstruct N pol. modes.

- Sensitivities to extra pols. are almost the same as those to ordinary tensor polys even if the polarization decomposition is done.

- Stochastic GW backgrounds with 3 pol. modes (tensor, vector, scalar) can be separated by, at least, 3 detectors.
PROPAGATION SPEED TEST
MOTIVATION

In GR, GW propagates with the speed of light.

GW propagation speed could be changed due to

- modification of gravity (e.g. graviton mass, etc.)
- spacetime structure (e.g. Lorentz violation, extra dimensions, quantized spacetime, etc.)

The propagation speed test of GW is important because the GW speed has not ever been measured.

We proposed the method to measure GW propagation speed and show how precisely we can measure it.
CURRENT CONSTRAINT

[Moore & Nelson 2001]

From the observations of ultra-high energy cosmic rays (UHECR)

Graviton looses its energy due to gravitational Cherenkov radiation if the propagation speed of graviton is less than the speed of light. Then UHECR cannot reach the Earth.

However, such UHECR have been observed.

Assuming the sources of UHECR are in the Galaxy,

$$\delta_g \equiv 1 - \frac{v_g}{c} < 2 \times 10^{-15}$$ (applied only to subluminal propagation of graviton)

The problem is that this constraint is indirect one and depends on the above assumption.
OUR METHOD

Direct measurement of propagation speed of GW
[AN & Nakamura 2014]

\[T_g \neq T_\nu \]

- neutrino mass
- graviton mass?
- Lorentz violation?
- other spacetime effects?
DETECTABLE DERIVATION OF GW SPEED

\[\tau_{\text{obs}} = \Delta T + \tau_{\text{int}} \]

\[\Delta T = T_\nu - T_g \]

Uncertainties are in \(T_\nu \) (from neutrino mass uncertainty) and \(\tau_{\text{int}} \) (from the emission model of a source).

Detectable \(\delta_g \) is

\[\Delta \tau_{\text{int}} < T_0 |\delta_\nu - \delta_g| \]

\(L \) : Distance to a source

\[T_0 \equiv \frac{L}{c} \]

\[\delta_g \equiv \frac{c - v_g}{c} \]

\[\delta_\nu \equiv \frac{c - v_\nu}{c} \]
SUPERNova SIMULATION

Neutrinos start to be emitted within several msec after the core bounce.

\[\Delta \tau_{\text{int}} < 10 \text{ msec} \]

\[E = 10 \text{ MeV} \]

\[L = 100 \text{ kpc} \]

with aLIGO

[Ott et al. 2012]
Taking into account a broad range of emission mechanism for SGRB leads to conservative limits on emission time delay,
[Baret et al. 2011]

\[\Delta \tau_{\text{int}} = 500 \text{ sec} \]

\[L = 200 \text{ Mpc} \quad \text{with aLIGO} \]
POSSIBLE CONSTRAINTS ON GW PROPAGATION SPEED

If there is no deviation of GW speed from c, δ_g is constrained. [AN & Nakamura 2014]
COMPARISON WITH OTHER METHOD

GW Rømer time delay [Finn & Romano 2013]

Rømer time delay [O. Rømer 1676]

The period of occultations of the Galilean satellite Io is modulated by Earth’s revolution.

Propagation speed of light is finite.

GW amplitude and phase also experience the modulations due to Earth’s spin and revolution.

With rapidly rotating NS detected by aLIGO (SNR=10)

\[\delta_g \lesssim 10^{-6} \]

GW & SN neutrino \[\delta_g \lesssim 10^{-15} \] 8-9 orders of magnitude stronger !!

GW & GRB photon \[\delta_g \lesssim 10^{-14} \]
USING MULTIPLE BINARIES

With a next-generation GW detector (Einstein Telescope), many binaries at cosmological distance will be observed.

We can distinguish between true signal and intrinsic time error.
SUMMARY
SUMMARY

- General Relativity is well tested and has passed all tests in a weak field regime.

- A gravitational wave will be detected for the first time in a couple of years by ground-based GW detectors.

- Gravitational waves bring new opportunities to test gravity in strong & dynamical regimes.

- Measuring the polarization modes and the propagation speed of GW is fundamental model-independent tests of gravity.

- We would finally confirm all predictions of GR by Einstein in the centennial year of GR !!