Experiment 7 DATA SHEET

		Name:		
		Section:		
A. Observations: As you slide the mass further down the meter stick, however the difficulty of holding the meter stick change?				
B. Calculation of Torque				
position of fulcrum =	cm mark			
Combined mass of hanger pan, and mass (kg)	combined weight (N)	distance from fulcrum (m)	Calculated Torque (N*m)	
C. Determination of an Unl	known Mass			
		m		
C. Determination of an Union Step 13: distance from rock and hanger Step 14 a: known mass of hanger, pan	r to fulcrum			
Step13: distance from rock and hanger	r to fulcrum	kg		
Step 13: distance from rock and hanger Step 14 a: known mass of hanger, pan	r to fulcrum, and 100g	kg		
Step 13: distance from rock and hanger Step 14 a: known mass of hanger, pan Step 14 b: known weight of hanger, pan Step 17: distance from known mass to	r to fulcrum, and 100gan, and 100g	kg N nncedn		
Step 13: distance from rock and hanger Step 14 a: known mass of hanger, pan Step 14 b: known weight of hanger, pa	r to fulcrum, and 100g an, and 100g fulcrum when bala	kgNnnnN * m		
Step 13: distance from rock and hanger Step 14 a: known mass of hanger, pan Step 14 b: known weight of hanger, pan Step 17: distance from known mass to Step 18: calculated torque caused by k	r to fulcrum, and 100g an, and 100g fulcrum when bala known mass nd mass hanger	kgN uncednN * mN	1	
Step 13: distance from rock and hanger Step 14 a: known mass of hanger, pan Step 14 b: known weight of hanger, pan Step 17: distance from known mass to Step 18: calculated torque caused by k Step 21 a: calculated weight of rock at	r to fulcrum, and 100g an, and 100g fulcrum when bala known mass and mass hanger	kgN nncednN * mNN		

D. Investigation of a "Solitary Seesaw"

mass of meter stick	kg
final position of fulcrum	cm mark
distance between fulcrum and mass	cm

QUESTIONS

- 1. Define **torque** and draw a diagram that illustrates the definition, labeling where the fulcrum is located and where the distances are measured.
- In part A, why did it become more difficult to rotate the meter stick each time you repositioned the mass?
- 3. After the meter stick was balanced in part B, the system was in **equilibrium**. Define equilibrium. Since forces were acting on the meter stick, explain why the meter stick was in equilibrium.
- 4. In part D, there was a mass placed on one side of the fulcrum that caused a torque. When the fulcrum was positioned so that the system was in equilibrium, there must have been a second torque to counteract the first. What produced this second torque?
- 5. At what position along the meter stick did this torque act?
- 6. A mass of 1 kg is located at the 0-cm end of the meter stick. If the meter stick is suspended at its center, what mass must be placed at the 75-cm mark to balance the stick?
- 7. Why is it easier to open a door by pushing on the edge of the door nearer the knob than the hinges?
- 8. Identify a measurement device we have been using in this laboratory that makes use of torque. Draw a picture of the device identifying the fulcrum and lever arm distances.