PHYS 733: Elementary Particle Physics

Homework \#4

Spring 2018
Due Date: 4/10/18

1. In the center-of-mass frame for the process $\mathrm{AB} \rightarrow \mathrm{CD}$, show that

$$
\begin{aligned}
& d Q=\frac{1}{4 \pi^{2}} \frac{p_{f}}{4 \sqrt{s}} d \Omega \\
& F=4 p_{i} \sqrt{s}
\end{aligned}
$$

And hence that the differential cross section is

$$
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\left.\frac{1}{64 \pi^{2} s}\left(\frac{p_{f}}{p_{i}}\right) \mathcal{M}\right|^{2}
$$

2. Show that for very high-energy "spinless" electron-muon scattering,

$$
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{\alpha^{2}}{4 s}\left(\frac{3+\cos \theta}{1-\cos \theta}\right)^{2}
$$

Where θ is the scattering angle and $\alpha=e^{2} / 4 \pi$. Neglect the particle masses.
3. Show that in the reaction $A+B \rightarrow C+D$,

$$
s+t+u=m_{A}^{2}+m_{B}^{2}+m_{C}^{2}+m_{D}^{2}
$$

4. Taking $e^{+} e^{-} \rightarrow e^{+} e^{-}$to be the s channel process, verify that

$$
\begin{aligned}
& s=4\left(k^{2}+m^{2}\right) \\
& t=-2 k^{2}(1-\cos \theta) \\
& u=-2 k^{2}(1+\cos \theta)
\end{aligned}
$$

Where θ is the center-of-mass scattering angle and $k=\left|\mathbf{k}_{i}\right|=\left|\mathbf{k}_{f}\right|$, where \mathbf{k}_{i} and \mathbf{k}_{f} are, respectively, the momenta of the incident and scattered electrons in the center-of-mass frame. Show that the process is physically allowed provided $s \geq 4 m^{2}, t \leq 0, u \leq 0$. The physical region is shown shaded in the figure drawn in class. Note that $t=0(u=0)$ correspond to forward (backward) scattering.
5. Show that the invariant amplitude for "spinless" electron-positron scattering,

$$
-i \mathcal{M}_{e^{+} e^{-}}=-i\left(-e^{2} \frac{\left(p_{A}+p_{C}\right)_{\mu}\left(-p_{D}-p_{B}\right)^{\mu}}{\left(p_{D}-p_{B}\right)^{2}}-e^{2} \frac{\left(p_{A}-p_{B}\right)_{\mu}\left(-p_{D}+p_{C}\right)^{\mu}}{\left(p_{C}+p_{D}\right)^{2}}\right),
$$

can be written as

$$
\mathcal{M}_{e^{+} e^{-}}(s, t, u)=e^{2}\left(\frac{s-u}{t}+\frac{t-u}{s}\right) .
$$

Comment on the symmetry of \mathcal{M} under $s \leftrightarrow t$.
6. In $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$near threshold, one can obviously not neglect the mass of the τ. Working from $\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}\left(\frac{p_{f}}{p_{i}}\right)|\mathcal{M}|^{2}$ and the exact spinaveraged amplitude
$|\mathcal{M}|^{2}=\frac{8 e^{4}}{q^{4}}\left[\left(p \cdot p^{\prime}\right)\left(k \cdot k^{\prime}\right)+\left(k^{\prime} \cdot p\right)\left(k \cdot p^{\prime}\right)+m^{2} k^{\prime} \cdot p^{\prime}+M^{2} k \cdot p+2 m^{2} M^{2}\right]$
k, p : incoming e^{+}, e^{-}four vectors
k^{\prime}, p^{\prime} : scattered τ^{+}, τ^{-}four vectors
m, M : masses of e, τ
Show that the total cross-section for τ production is given by

$$
\sigma=\frac{4 \pi \alpha^{2}}{3 s} \beta\left(\frac{3-\beta^{2}}{2}\right) \text { where } \beta=\frac{v_{\tau}}{c} .
$$

