Homework #4 Due Date: 4/10/18

1. In the center-of-mass frame for the process $AB \rightarrow CD$, show that

$$dQ = \frac{1}{4\pi^2} \frac{p_f}{4\sqrt{s}} d\Omega$$

$$F = 4 p_i \sqrt{s}$$

And hence that the differential cross section is

$$\left. \frac{d\sigma}{d\Omega} \right|_{cm} = \frac{1}{64\pi^2 s} \left(\frac{p_f}{p_i} \right) \left| \mathcal{M} \right|^2$$

2. Show that for very high-energy "spinless" electron-muon scattering,

$$\left. \frac{d\sigma}{d\Omega} \right|_{\alpha} = \frac{\alpha^2}{4s} \left(\frac{3 + \cos \theta}{1 - \cos \theta} \right)^2$$

Where θ is the scattering angle and $\alpha = e^2/4\pi$. Neglect the particle masses.

3. Show that in the reaction $A+B \rightarrow C+D$,

$$s + t + u = m_A^2 + m_B^2 + m_C^2 + m_D^2$$

4. Taking $e^+e^- \rightarrow e^+e^-$ to be the s channel process, verify that

$$s = 4(k^2 + m^2)$$

$$t = -2k^2(1 - \cos\theta)$$

$$u = -2k^2(1 + \cos\theta)$$

Where θ is the center-of-mass scattering angle and $k = |\mathbf{k}_i| = |\mathbf{k}_f|$, where \mathbf{k}_i and \mathbf{k}_f are, respectively, the momenta of the incident and scattered electrons in the center-of-mass frame. Show that the process is physically allowed provided $s \ge 4m^2$, $t \le 0$, $u \le 0$. The physical region is shown shaded in the figure drawn in class. Note that t = 0(u = 0) correspond to forward (backward) scattering.

5. Show that the invariant amplitude for "spinless" electron-positron scattering.

$$-i\mathcal{M}_{e^+e^-} = -i\left(-e^2\frac{\left(p_A + p_C\right)_{\mu}\left(-p_D - p_B\right)^{\mu}}{\left(p_D - p_B\right)^2} - e^2\frac{\left(p_A - p_B\right)_{\mu}\left(-p_D + p_C\right)^{\mu}}{\left(p_C + p_D\right)^2}\right),$$

can be written as

$$\mathcal{M}_{e^+e^-}(s,t,u) = e^2 \left(\frac{s-u}{t} + \frac{t-u}{s} \right).$$

Comment on the symmetry of \mathcal{M} under $s \leftrightarrow t$.

6. In $e^+e^- \to \tau^+\tau^-$ near threshold, one can obviously not neglect the mass of the τ . Working from $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \left(\frac{p_f}{p_i}\right) |\mathcal{M}|^2$ and the exact spinaveraged amplitude

$$\left|\mathcal{M}\right|^{2} = \frac{8e^{4}}{q^{4}} \left[(p \cdot p')(k \cdot k') + (k' \cdot p)(k \cdot p') + m^{2}k' \cdot p' + M^{2}k \cdot p + 2m^{2}M^{2} \right]$$

k, p: incoming e^+, e^- four vectors

k', p': scattered τ^+, τ^- four vectors

m, M: masses of e, τ

Show that the total cross-section for τ production is given by

$$\sigma = \frac{4\pi\alpha^2}{3s}\beta\left(\frac{3-\beta^2}{2}\right)$$
 where $\beta = \frac{v_{\tau}}{c}$.