PHYS 733: Elementary Particle Physics

Homework \#3

Spring 2018
Due Date: 03/13/18

1. a) Find the quark wave-function (flavor only) for the mixedantisymmetric baryon octet representations (the mixed-symmetric wave-functions were all given in your handout). Show that the two Σ^{0} and the two Λ^{0} states (one MS and one MA each) are all orthogonal to each other.
b) From the quark wave-function for the Λ^{0}, show that

$$
\begin{aligned}
& I^{+}\left|\Lambda^{0}\right\rangle=0 \\
& V^{+}\left|\Lambda^{0}\right\rangle=|p\rangle
\end{aligned}
$$

so that the Λ^{0} has $\mathrm{I}=0$ and is also a part of the baryon octet $\left(\mathrm{J}^{\mathrm{P}}=1 / 2^{+}\right)$.
2. Use Young Tableaus to find the quantities A, B, and C in
a. $4 \otimes 4 \otimes 4=A \oplus B \oplus B \oplus C$
b. $8 \otimes 8 \otimes 8=A \oplus B \oplus B \oplus C$
c. $4 \otimes 4=A \oplus B$
d. $4 \otimes \overline{4}=A \oplus B$
3. In addition to the $\mathrm{u}, \mathrm{d}, \mathrm{s}$ quarks, there is a fourth quark c which makes the upper member of a (c,s) doublet (but note that $\mathrm{I}=0$ for both c and s). Find all of the ground state baryons containing one and only one c quark and their quark wave-functions, with
a. $\mathrm{J}^{\mathrm{P}}=\frac{3}{2}^{+}$
b. $\mathrm{J}^{P}=\frac{1}{2}^{+}$(use only the MS octet representation)

Give the quantum numbers $\mathrm{I}, \mathrm{I}_{3}, \mathrm{~S}$, and Q for each of these states.
4. From the quark wave-function for the mesons, prove that
a. $I^{+}\left|\eta^{8}\right\rangle=0$ and $V^{+}\left|\eta^{8}\right\rangle=\left|K^{+}\right\rangle$
so that the η^{8} has $\mathrm{I}=0$ and belongs to the meson octet, and
b. $I^{+}\left|\eta^{1}\right\rangle=0$ and $V^{+}\left|\eta^{1}\right\rangle=0$
so that the η^{1} has $\mathrm{I}=0$ and does not belongs to the meson octet.
5. Find all of the ground state mesons containing one and only one c quark and their quark wave-functions, with
a. $\mathrm{J}^{P}=0^{-}$
b. $\mathrm{J}^{P}=1^{-}$

Start from the properly symmetrized wave-functions

$$
\left|\pi^{+}\right\rangle=\frac{1}{\sqrt{2}}(u \bar{d}+\bar{d} u) \text { and }\left|\rho^{+}\right\rangle=\frac{1}{\sqrt{2}}(u \bar{d}-\bar{d} u) .
$$

Give the quantum numbers $\mathrm{I}, \mathrm{I}_{3}, \mathrm{~S}$, and Q for each of these states.

