Homework #1

1. Problem 1.1

2. The collision of two particles, each of mass M, is viewed in a Lorentz frame in which they hit head on with momenta equal in magnitude but opposite in direction. We speak of this as the "center-of-mass" (CM) frame (though the name "center-of-momentum" would be more appropriate). The total energy of the system is E_{cm} . Show that the Lorentz invariant

 $s \equiv (p_1 + p_2)_{\mu} (p_1 + p_2)^{\mu} \equiv (p_1 + p_2)^2 = E_{cm}^2$. If the collision is viewed in the "laboratory" frame where one of the particles is at rest, then show, by evaluating the invariant *s*, that the other has energy $E_{lab} = \frac{E_{cm}^2}{2M} - M$. We can see from this result that colliding-beam accelerators have an enormous advantage over fixed-target accelerators in achieving a given total CM energy, \sqrt{s} . List some advantages of fixed-target accelerators.

3. a) When a 100 GeV π⁺ decays to μ⁺v, the energies in the lab system will depend on the decay angle in the CM system. Find E_v(max) and E_v(min) in the lab. Numerical values are required.
b) Find the neutrino energy if the decay angle in the lab is 1 mrad (corresponding to the edge of a 2 m target at the end of a 1 km beam line).

c) Repeat both a) and b) for the decay $K^+ \rightarrow \mu^+ \nu$.

4. Problem 2.1

- 5. Problem 2.4
- 6. Problem 2.5
- 7. Problem 2.6