6 Magnetization

6.1 Magnetization
6.2 The Field of a Magnetized Object
6.3 The Auxiliary Field
6.4 Linear and Nonlinear Media

Diamagnets, Paramagnets, Ferromagnets

- Magnetism in a material is a result of tiny dipole moments in atomic scale.
- Usually they each other due to their random orientation.
- In an external magnetic field those dipoles align and the medium becomes polarized (or magnetized)
- Paramagnets: magnetization is parallel to the applied magnetic field
- Diamagnets: magnetization is opposite to the applied magnetic field
- Ferromagnets: retain a substantial magnetization indefinitely after the external field has been removed.

Torques and Forces on Magnetic Dipoles

A magnetic dipole experiences a torque in a magnetic field :

Torque on a rectangular current loop in a uniform magnetic field

$$
\begin{aligned}
\vec{N} & =a F \sin \theta \hat{i} \\
& =a(b I B) \sin \theta \hat{i} \\
& =m B \sin \theta \hat{i} \quad m=a b I
\end{aligned}
$$

$\vec{N}=\vec{m} \times \vec{B} \quad$ magnetic dipole moment
-This torque lines the magnetic dipole up parallel to \vec{B} : paramagnetism.

(b)

In a uniform magnetic field, the net force is zero.

$$
\stackrel{\rightharpoonup}{F}=I \oint(d \stackrel{\rightharpoonup}{l} \times \vec{B})=I(\oint d \stackrel{\rightharpoonup}{l}) \times \vec{B}=0
$$

But in a nonuniform magnetic field, there is a net force For an infinitesimal loop with dipole moment m in a field B

$$
\begin{aligned}
& \vec{F}=I \oint(d \vec{l} \times \vec{B}(r))=I \int\lfloor d y \hat{y} \times \vec{B}(0, y, 0)+d z \hat{z} \times \vec{B}(0, \varepsilon, z)-d y \hat{y} \times \vec{B}(0, y, \varepsilon)-d z \hat{z} \times \vec{B}(0,0, z)\rfloor \\
& =I \int\{d y \hat{y} \times[\vec{B}(0, y, 0)-\vec{B}(0, y, \varepsilon)]+d z \hat{z} \times[\vec{B}(0, \varepsilon, z)-\vec{B}(0,0, z)]\} \\
& =I \int\left(-d y \hat{y} \times\left.\varepsilon \frac{\partial \vec{B}}{\partial z}\right|_{(0, y, 0)}+d z \hat{z} \times\left.\mathcal{E} \frac{\partial \vec{B}}{\partial y}\right|_{(0,0, z)}\right) \\
& =I \varepsilon^{2}\left(\hat{z} \frac{\partial \vec{B}}{\partial y}-\hat{y} \frac{\partial \vec{B}}{\partial z}\right)=m\left(\hat{y} \frac{\partial B_{x}}{\partial y}-\hat{x} \frac{\partial B_{y}}{\partial y}-\hat{x} \frac{\partial B_{z}}{\partial z}-\hat{z} \frac{\partial B_{x}}{\partial z}\right) \\
& =m\left(\hat{y} \frac{\partial B_{x}}{\partial y}-\hat{x} \frac{\partial B_{y}}{\partial y}-\hat{x} \frac{\partial B_{z}}{\partial z}+\hat{z} \frac{\partial B_{x}}{\partial z}\right)=m\left[\hat{y} \frac{\partial B_{x}}{\partial y}-\hat{x}\left(\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)+\hat{z} \frac{\partial B_{x}}{\partial z}\right] \\
& =m\left[\hat{x} \frac{\partial B_{x}}{\partial x}+\hat{y} \frac{\partial B_{x}}{\partial y}+\hat{z} \frac{\partial B_{x}}{\partial z}\right] \quad(\because \nabla \cdot \vec{B}=0) \quad \vec{F}=\nabla(\vec{m} \cdot \vec{B}) \\
& =m \nabla B_{x}=m \nabla(\hat{x} \cdot \vec{B})=\nabla(m \hat{x} \cdot \vec{B})=\nabla(\hat{m} . \vec{B})
\end{aligned}
$$

Effect of a Magnetic Field on Atomic Orbits A classical model:

Assume the orbit of an electron a circle of radius r since its period $T=\frac{2 \pi r}{v}=\frac{2 \pi}{w_{c}} \ll 1$

Its motion gives a steady-like current

$$
\begin{gathered}
I=\frac{e}{T}=\frac{e v}{2 \pi r} \\
\stackrel{m}{m}=\pi r^{2} I=-\frac{1}{2} e v r \hat{z}
\end{gathered}
$$

With a dipole moment
Which is subjected to force in a magnetic field $\vec{B}=\vec{m} \times \vec{B}$
Without a magnetic field

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}=m_{e} \frac{v^{2}}{r}
$$

In a magnetic field \vec{B}

$$
\begin{aligned}
& \begin{aligned}
& e v^{\prime} B=\frac{m_{e}}{r}\left(v^{\prime}-v^{2}\right) \quad(\text { assume } r=\text { constant }) \\
& 4 \pi \varepsilon_{0} \frac{e^{2}}{r^{2}}+e v^{\prime} B=m_{e} \frac{v^{\prime^{2}}}{r} \\
&=\frac{m_{e}}{r}\left(v^{\prime}+v\right)\left(v^{\prime}-v\right) \Rightarrow \Delta v=\frac{e r B}{2 m_{e}} \\
&\left(\Delta v \ll v \quad v+v^{\prime} \approx 2 v^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Since magnetic moment $\quad \vec{m}=-\frac{1}{2} e v r \hat{z}$
The B field changes the dipole moment $\Delta \vec{m}=-\frac{1}{2} e(\Delta v) r \hat{k}=-\frac{e^{2} r^{2}}{4 m_{e}} \vec{B}$
This change in the dipole moment is opposite to the direction of B.
Since usually atoms (and electron orbits)are randomly oriented, net magnetization is zero. But in a magnetic field each atom picks up an extra dipole moment in opposite direction to field. Thus resulting a diamagnetism.

Diamagnetism and paramagnetism are usually very weak, can be neglected in most cases.

6.2 The Field of a Magnetized Object

magnetization $\vec{M} \equiv$ magnetic dipole moment per unit volume for a single dipole \vec{m}

$$
\vec{A}=\frac{\mu_{0}}{4 \pi} \frac{\vec{m} \times \hat{\varkappa}}{\imath^{2}} \quad \vec{m}=\vec{M} d \tau^{\prime}, \quad ⿲=r-r^{\prime}
$$

$\operatorname{total} \bar{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\bar{M} \times \hat{\boldsymbol{z}}}{\varepsilon^{2}} d \tau^{\prime}$

$$
\begin{aligned}
& =\frac{\mu_{0}}{4 \pi} \int\left(\vec{M} \times \nabla^{\prime} \frac{1}{\imath}\right) d \tau^{\prime} \quad\left(\because\left(\nabla \cdot \frac{1}{\imath}=\nabla^{\prime} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}=\nabla^{\prime} \frac{1}{\left|\overrightarrow{r^{\prime}}-\vec{r}\right|}=-\frac{\left(r^{\prime}-r\right)}{\tau^{2}}=\frac{r \hat{r-r^{\prime}}}{\varepsilon^{2}}=\frac{\hat{\varepsilon}}{\varepsilon^{2}}\right)\right) \\
& =\frac{\mu_{0}}{4 \pi}\left[\int \frac{1}{r}\left(\nabla^{\prime} \times \vec{M}\right) d \tau^{\prime}-\int \nabla^{\prime} \times\left(\frac{1}{r} \bar{M}\right) d \tau^{\prime}\right]\left(\because \nabla \times\left(\frac{1}{r} \bar{M}\right)=\frac{1}{r}\left(\nabla^{\prime} \times \bar{M}\right)-\bar{M} \times\left(\nabla^{\prime} \frac{1}{v}\right)\right) \\
& =\frac{\mu_{0}}{4 \pi} \int \frac{1}{\tau}\left(\nabla^{\prime} \times \vec{M}\right) d \tau^{\prime}+\frac{\mu_{0}}{4 \pi} \oint \frac{1}{r}\left(\vec{M} \times d \vec{a}^{\prime}\right) \quad\left(\because \int \nabla \times \vec{A} d \tau=\oint \vec{A} \times d \vec{a} \text { problem 1.61b }\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{r}^{\frac{1}{r}}\left(\nabla^{\prime} \times \vec{M}\right) d \tau^{\prime}+\frac{\mu_{0}}{4 \pi} \oint \frac{1}{r}\left(\vec{M} \times d \vec{a}^{\prime}\right) \\
& \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\vec{J}_{b}\left(r^{\prime}\right)}{r} d \tau^{\prime}+\frac{\mu_{0}}{4 \pi} \int_{S} \frac{\bar{K}_{b}\left(r^{\prime}\right)}{r} d \vec{a}^{\prime}
\end{aligned}
$$

Potential (and field) of a magnetized object is the same as would be produced by a bound volume current $J_{b}\left(r^{\prime}\right)=\nabla^{\prime} \times \vec{M}\left(r^{\prime}\right)$ and a surface current $K_{b}\left(r^{\prime}\right)=\vec{M}\left(r^{\prime}\right) \times \hat{n}$
cf: in ES volume charge $\rho_{b}=-\nabla \cdot P$ surface charge $\sigma_{b}=\vec{P} \cdot \hat{n}$

Example: Magnetic field of a uniformly magnetized sphere

Since \vec{M} is uniform:

$$
\vec{J}_{b}=\nabla \times \vec{M}=0 \quad \vec{K}_{b}=\vec{M} \times \hat{n}=M \sin \theta \hat{\varphi}
$$

This is similar to the currents on a uniformly charged rotating spherical shell (Ch. 5)

$$
\begin{aligned}
& \vec{K}=\sigma \bar{v}=\sigma \omega R \sin \theta \hat{\varphi} \\
& \text { field produced } \vec{B}=\frac{2}{3} \mu_{0} \sigma z R \omega \hat{z} \quad \text { (inside) }
\end{aligned}
$$

inside $\quad \vec{B}=\frac{2}{3} \mu_{0} \vec{M} \quad$ (uniform)
outside field is same as that of a dipole $\quad \vec{m}=\frac{4}{3} \pi R^{3} \vec{M}$

Physical Interpretation of Bound Currents

$$
\begin{aligned}
& \vec{m}=\vec{M} a t \\
&=I a
\end{aligned} \quad \Rightarrow I=M t \begin{aligned}
& \\
& \\
& \\
& \\
& =K_{b} t \Rightarrow K_{b}=M
\end{aligned}
$$

Dipole currents

Internal loop currents cancel

Only the current flowing around the boundary remains

$$
\vec{K}_{b}=\vec{M} \times \hat{n}
$$

Each charge moves in a small loop, but the net effect is a macroscopic current flowing over the surface.

For non-uniform \vec{M} internal currents do not cancel.

A nonuniform M in y contributes to a current in x direction.

$$
\begin{aligned}
I_{x} & =\left[M_{z}(y+d y)-M_{z}(y)\right] d z \\
& =\frac{\partial M_{z}}{\partial y} d y d z
\end{aligned}
$$

Current density: $\quad J_{x}=\frac{I_{x}}{d y d z}=\frac{\partial M_{z}}{\partial y}$
A nonuniform M in z , also contributes to current in x direction

$$
J_{x}=-\frac{\partial M_{y}}{\partial z}
$$

$$
\begin{aligned}
\therefore\left(J_{b}\right)_{x}=\frac{\partial M_{z}}{\partial y}-\frac{\partial M_{y}}{\partial z} & \\
& \Rightarrow \vec{J}_{b}=\nabla \times \vec{M}
\end{aligned}
$$

$$
\nabla \cdot J_{b}=0
$$

6.3 The Auxiliary Field $\overrightarrow{\boldsymbol{H}}$

In Electrostatics

$$
\begin{array}{ll}
\rho_{b}=-\nabla \cdot \stackrel{\rightharpoonup}{P} & \nabla \cdot \stackrel{\rightharpoonup}{E}=\frac{\rho_{b}+\rho_{f}}{\varepsilon_{0}} \\
\stackrel{\rightharpoonup}{D}=\varepsilon_{0} \stackrel{\rightharpoonup}{E}+\stackrel{\rightharpoonup}{P} & \nabla \cdot \stackrel{\rightharpoonup}{D}=\rho_{f}
\end{array}
$$

In a magnetized medium there are bound currents $J_{b}=\nabla \times \vec{M}$
So the total current is sum of bound currents and other (free) currents

$$
J=J_{b}+J_{f}
$$

So the Ampere law: $\nabla \times \vec{B}=\mu_{0} \vec{J}=\mu_{0}\left(\vec{J}_{b}+\vec{J}_{f}\right)=\mu_{0}\left(\nabla \times \vec{M}+\vec{J}_{f}\right)$

$$
\begin{aligned}
& \Rightarrow \nabla \times\left(\frac{1}{\mu_{0}} \vec{B}-\vec{M}\right)=\vec{J}_{f} \\
& \text { or } \nabla \times \vec{H}=\vec{J}_{f} \text { where } \vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M}
\end{aligned}
$$

In integral form

$$
\oint \vec{H} \cdot d \stackrel{\rightharpoonup}{I}=I_{f, e n c}
$$

Total free current passing through an Amperian loop

Problem 6.12 An infinitely long cylinder, of radius R, carries a "frozen-in" magnetization. parallel to the axis,

$$
\mathbf{M}=k s \hat{\mathbf{z}},
$$

where k is a constant and s is the distance from the axis; there is no free current anywhere. Find the magnetic field inside and outside the cylinder by two different methods:
(a) As in Sect. 6.2, locate all the bound currents, and calculate the field they produce.
(b) Use Ampère's law (in the form of Eq. 6.20) to find \mathbf{H}, and then get \mathbf{B} from Eq. 6.18. (Notice that the second method is much faster, and avoids any explicit reference to the bound currents.)

Boundary Conditions

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{\ell}=\mu_{0} I_{\text {enc }} \\
& \Rightarrow B_{\text {above }}-B_{\text {below }}=\mu_{0} K
\end{aligned}
$$

$$
\oint \vec{H} \cdot d \vec{I}=I_{f, e n c}
$$

$$
H^{\|}{ }_{\text {above }}-H_{\text {below }}=\mu_{0} K_{f}
$$

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{a}=0 \Rightarrow B^{\perp}{ }_{\text {above }}=B^{\perp}{ }_{\text {below }} \\
& \text { Since } \quad \vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M} \\
& \begin{array}{l}
H^{\perp}{ }_{\text {above }}+M^{\perp}{ }_{\text {above }}=H^{\perp}{ }_{\text {below }}+M^{\perp}{ }_{\text {below }} \\
H^{\perp}{ }_{\text {above }}-H^{\perp}{ }_{\text {below }}=-\left(M^{\perp}{ }_{\text {above }}-M^{\perp}{ }_{\text {below }}\right)
\end{array}
\end{aligned}
$$

linear and Nonlinear Media

6.4. Magnetic Susceptibility and Permeability

In Electrostatics $\quad \vec{P}=\varepsilon_{0} \chi_{e} \vec{E} \quad$ (linear dielectric)

$$
\left(\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}\right) \quad \vec{D}=\varepsilon \vec{E} \quad \varepsilon=\varepsilon_{0}\left(1+\chi_{e}\right)
$$

Similar parameters can be defined for magnatostatics. In paramagnetic and diamagnetic materials magnetization is sustained by the applied magnetic field and proportional to B
As a convention magnetization is written in terms of H ,
For a linear media $\quad \vec{M}=\chi_{m} \vec{H} \quad \chi_{m}$ magnetic susceptibility

$$
\begin{aligned}
& \chi_{m}>0 \text { paramagnets, } \chi_{m}<0 \text { dimagnets. typically } \approx 10^{-5} \\
& \vec{B}=\mu_{0}(\vec{H}+\vec{M})=\mu_{0}\left(1+\chi_{m}\right) \vec{H} \\
&=\mu \vec{H} \quad \text { where } \mu=\mu_{0}\left(1+\chi_{m}\right)
\end{aligned}
$$

μ permeability ; μ_{0} permeability of free space

Example: Magnetic field of an infinite length solenoid filled with linear material of susceptibility χ_{m}

Since B depends on bound currents, apply ampere Law for H

$$
\begin{aligned}
& \int H \cdot d l=I_{e n c} \\
& \vec{H}=n I \hat{z} \\
& \vec{B}=\mu_{0}\left(1+\chi_{m}\right) n I \hat{k}
\end{aligned}
$$

Bound surface currents

$$
\vec{K}_{b}=\vec{M} \times \hat{n}=\chi_{m} n I(\hat{z} \times \hat{n})=\chi_{m} n I \hat{\varphi}
$$

If the medium is paramagnetic ($\chi_{m}>0$) and field is (slightly) enhanced and if the medium diamagnetic field is reduced.

6.4.2 Ferromagnetism

Paramagnetic no B applied $\vec{B} \longrightarrow \longrightarrow$ remove \vec{B}

$$
\vec{M}=0
$$

Ferromagnet
no \vec{B}

with \vec{B}

6.4.2(2)

6.4.2(3)

Iron is ferromagnetic,

$$
\text { but if } T>T_{\text {curie }} \underbrace{(770 \cdot \text { for iron })}_{\text {curie point }}
$$

it become a paramagnetic.
This is a phase transition.

