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4.1 Polarization

Dielectrics

According to their response to electrostatic field, most materials belong
to two classes:

« conductors: charges free to move in the material

« insulators (or dielectrics): all charges are attached to specific atoms
or molecules.

Stretching and rotating are the two principle mechanisms by
which electric fields can distort the charge distribution of a
dielectric atom or molecule.



4.1.2 Induced Dipoles and Polarizability

Induced dipole
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Atomic polarizability

A simple estimate:
The field at a distance d from the center of a uniform charge sphere
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In case of a molecule it is more complex, their polarization may not

be isotropic: Bl g VP,

Generally: . . .
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the most general linear relation
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o, depend on the orientation of the axis you chose.

It's possible to select axes such that o;; =0 fori # j



4.1.3 Alignment of Polar Molecules

Polar molecules have built-in, permanent dipole moments

applied electric field
(uniform)
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If the applied electric field is nonuniform,
the total force is not zero.
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4.1.4 Polarization and Susceptibility

Vlied Field, Eg

The polarization of a polarized dielectric P EVIEPIEy
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4.2 The Field of a Polarized Object

Bound charges:
Divide the material into infinitesimal dipoles and sum up
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4.2.2 Physical Interpretation of Bound Charge

Pp and Op represent perfectly genuine accumulations of charge.

for uniformly distributed dipoles
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for a uniform polarization and perpendicular cut

dipole moment =P(Ad) = qd
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4.2.2 (2)

for a uniform polarization and oblique cut

g=PA

0, =—1—=P.cos@=P-i

end
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If the polarization is nonuniform , .
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Example: Find the field of a uniformly polarized sphere of radius R
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4.3 The Electric Displacement

Gauss’ Law in The Presence of Dielectrics:

Total charge density p=p, +p¢
4 4
bound free

Gauss'law vy.f-P . ov.F=p= pb+pf:_v P+p;
€0

So in a dielectric medium Gauss’ law can be written as

V-D=p, Deay 5
electric displacement
CfsurfaceD = Qf enc.



Example: A long wire with linear charge A is
covered with an insulation of radius a. Find
the electrical displacement.

<]Ssurfczce D= Qf enc.
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4.3.2 A Deceptive Parallel

. _ 1 R
V-E - P - E= jp—dr
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. VXE=0
since V X A = 0 this solution is unique

(Helmhortz theorem: V(r)z VvV V(r)) —Vx(V xV(r))

But VxD=%(V><E)+V><P V x P is not always zero
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And in general there is no potential for D (cannot be
written as a gradient of a scalar)



Permittivity, Dielectric Constant:
for linear dielectrics P ok

xe Electric susceptibility
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Example: A metal sphere of radius a has a charge Q. It is
surrounded by a liner dielectric material of permittivity € . Find the
potential at the center, and bound charges of the medium (p, a3 ).
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for b>r>a

(V- -P=
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Example: A parallel plate capacitor is filled with an insulating material of
dielectric constant €. What is the effect of the dielectric on its capacitance?

without dielectric V,,. = E.d
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Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24) is filled
with two slabs of linear dielectric material. Each slab has thickness a, so the total distance
between the plates is 2a. Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric
constant of 1.5. The free charge density on the top plate is o and on the bottom plate —o.

(a) Find the electric displacement D in each slab.

(b) Find the electric field E in each slab.

(¢) Find the polarization P in each slab.

(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.

(f) Now that you know all the charge (free and bound), recalculate the field in each slab, and
confirm your answer to (b).
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Boundary Conditions:
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Example: Dielectric sphere in a uniform
electric field, find the electric field inside

the sphere.
Vin = Vout atr =R
V. oV
- al = Eout aout at r = R (no free charges at the surface)
r r
V. — —Eyz=—Ejcos@ for r>>R

inside the sphere: V(r,0)= Z Ar'P(cos0)
=0

outside the sphere: V(r,0)=—E Rcos 8+ Z% P (cos0)
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boundary condition (i) Z AR'E(cos@) =-E,Rcosf+ Z
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4.4.3 Energy in a Dielectric System
Energy of a charged capacitor yw =1 cy?

If the capacitor is filled with a dielectric C=¢,C .

So the stored energy should increases by the same factor:

energy stored in any electrostatic system (vacuum) W = Gy J' E%dr
7’
E e
with linear dielectric W =&, (70 | Ezdz'j - |D-Edr

which suggests the energy in the dielectricis = —jD -Edt



4.4.3 Energy in Dielectric media (formal proof)

Suppose we are gradually building up charge in a dielectric medium
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4.4.4 Forces on dielectrics

YA

with Q constant  dW =F,_ dx

5 o )
W = M L0 de 1 de
de 22 0 oy

Q €A gw dC  gX,w

7 0 e dx d
. oy w 10 1
F=_t04"y note we used W=5% not W=5CV2



If V is kept constant:

1 _
If W=5CV2 used F=-F :_d_W:_lv2d_C

wrong sign
- dx ) o

The reason is to keep V constant the battery must do work.
So that has to be taken in to account

dW =F, dx+VdQ

welev? o L adle - nd



Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand
vertically in a tank of dielectric oil (susceptibility y., mass density p). The inner one is
marntained at potential V', and the outer one is grounded (Fig. 4.32). To what height (h) does
the o1l rise in the space between the tubes?

Hint: find the capacitance of tube first



