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Dielectrics

According to their response to electrostatic field, most  materials belong 

to two classes:
• conductors:  charges free to move in the material 

• insulators (or dielectrics):   all charges are attached to specific atoms 
or molecules.

Stretching and rotating are the two principle mechanisms  by 

which electric fields can distort  the charge distribution of a 
dielectric atom or molecule.
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4.1.2 Induced Dipoles and Polarizability

A simple estimate:

The field at a distance d from the center of a uniform charge sphere

At equilibrium,

(v is the volume of the atom)
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Generally: 

the most general linear relation

or in (x,y,z)

αij depend on the orientation of the axis you chose.

It’s possible to select axes such that αij = 0 for ji ≠
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In case of a molecule it is more complex,  their polarization may not 

be isotropic:



4.1.3 Alignment of Polar Molecules

Polar molecules have built-in, permanent dipole moments 

applied electric field
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If the applied electric field is nonuniform,

the total force is not zero.

for short dipole,
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4.1.4 Polarization and Susceptibility

The polarization of a polarized dielectric

dipole moment per unit volume

is electric susceptibility tensor

for linear dielectric

is electric susceptibility
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4.2 The Field of a Polarized Object

4.2.1 Bound charges

4.2.2 Physical Interpretation of Bound Charge

4.2.3 The Field Inside a Dielectric



Bound charges:
Divide the material into infinitesimal dipoles and sum up 

bound charges: surface charge

volume charge
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4.2.2 Physical Interpretation of Bound Charge

and represent perfectly genuine accumulations of charge.

for uniformly distributed dipoles

for a uniform polarization and perpendicular cut
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for a uniform polarization and oblique cut

If the polarization is nonuniform ,

4.2.2 (2)
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Ex.9 of chapter 3

Similar to a potential of a dipole moment

Example:  Find the field of a uniformly polarized sphere of radius R
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Gauss’ Law in The Presence of Dielectrics:

bound free

So in a dielectric medium Gauss’ law can be written as 

electric displacement

Gauss’ Law

b fρ ρ ρ= +

0
0

b f fE E P
ρ

ε ρ ρ ρ ρ
ε

∇ ⋅ = ⇒ ∇ ⋅ = = + = −∇ ⋅ +
� � �

0( ) fE Pε ρ⇒∇ ⋅ + =
� �

fD ρ∇ ⋅ =
�

0D E Pε= +
� � �

.encfsurface
D da Q⋅ =∫
� �

�

Total charge density

4.3 The Electric Displacement 



Example: A long wire with linear charge λ is 
covered with an insulation of radius a. Find 
the electrical displacement.
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4.3.2 A Deceptive Parallel

since � × �� = 0 this solution is unique 

(Helmhortz theorem:                                                            ) 
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And in general  there is no potential for D (cannot be 

written as a gradient of a scalar) 



Permittivity, Dielectric Constant:

for linear dielectrics

permittivity permittivity of free space

dielectric constant or relative permittivity
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Example: A metal sphere of radius a has a charge Q. It is 

surrounded by a liner dielectric material of permittivity ε . Find the 
potential at the center, and bound charges of the medium (�� , ��  �.  
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for  b > r > a 
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Example:  A parallel plate capacitor is  filled with an insulating material of  
dielectric constant ε. What is the effect of the dielectric on its capacitance? 

Dielectric
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Boundary Conditions:
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Example: Dielectric sphere in a uniform 

electric field, find the electric field inside 
the sphere.
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4.4.3 Energy in a Dielectric System

Energy of a charged capacitor

If the capacitor is filled with a dielectric

energy stored in any electrostatic system (vacuum)

with linear dielectric
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for linear dielectric,
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4.4.3 Energy in Dielectric media (formal proof)
Suppose we are gradually  building up charge in a dielectric medium 



4.4.4 Forces on dielectrics

with Q constant
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If V is kept constant:

If                 used 
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The reason is to keep V constant the battery must do work.

So that has to be taken in to account 
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Hint: find the capacitance of tube first


