3. Calculating Electrostatic Potential

3.1 Laplace’s Equation
3.2 The Method of Images
3.3 Separation of Variables

3.4 Multipole Expansion



3.1.1 Introduction

The primary task of electrostatics is to study the interaction
(force) of a given stationary charges.
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-+ this integrals can be difficult (unless there is symmetry)
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. we usually calculate
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This integral is often too tough to handle analytically.



3.1.1

: : 2
In differential form V) = —(% (Poisson’s equation)

» to solve a differential eq. we need boundary conditions.
* In case of p =0, Poisson’s eq. reduces to Laplace’s equation

ViV =0
v o &V _,
Or in general D2 Syz 252

The solutions of Laplace’s equation are called harmonic function.



3.1.2 Laplace’s Equation in One Dimension
2
d—lz/=0 = V=mx+b
dx

m, b are to be determined by B.C.s

egllx=1)=4 . m=—1
Vix=5)=0 b=5

V=4 V=0 v

=V ==x+5
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1. V(x) is the average of V(x + R) and V(x - R), for any R:
V(x)=3[V(x+R)+V(x-R)]

= Laplace’s equation tolerates no local maxima or minima.



3.1.3 Laplace’s Equation in Two Dimensions

A partial differential eq. :
oV o
s =0
ox OY

There is no general solution.
We discuss certain general properties for now.

1. The value of V at a point (x, y) is the average of those around
the point.

= |
V(xjy) 27T R cfrcfele vt

2. V has no local maxima or minima; all
extreme occur at the boundaries.




3.1.4 Laplace’s Equation in Three Dimensions

The value of v at point P is the average value of v over a
spherical surface of radius R centered at P:

V(p)=—1- Vda
AR ° sphere

As a consequence, V can have no local maxima or minima,
the extreme values of v must occur at the boundaries.
Example:

I - 1 4 *&2 r +R2 2rRcos@

Areg °
Vave = 4;}22 4;?50 J[r* + R* - 2rRcos 9]_%}%2 sin 8dOdyp
4}%‘0 ZPI*R \/F ‘K ZFRCGSQ‘O
- 455 7R [(” tR) (1 R)] 4;%, q = i e

The same for a collection of g by the superposition principle.



3.1.5 Boundary Conditions and Uniqueness Theorems
First unigueness theorem :

The solution to Laplace’s equation in some region is uniquely determined,

iIf the value of v is specified on all their surfaces;
The outer boundary could be at infinity, where Vv is ordinarily taken to be

Zer0.

Ve 7
in 1D, - 5
one end other end

V =mx+b

V is uniquely determined by its value at the boundary.



Proof: Suppose V;, V, are two solutions for the
same boundary conditions.

V21, =0 V2V, =0

V;=n-V

VzVS - Vzr/l —VZVZ — 0

at boundary 7, =7, = V;=0 atboundary.

V;=0  everywhere

hence V,;=V, everywhere



3.1.5

The first uniqueness theorem also applies to regions with charge.

. 20 __ P 2y, _ P
Proof Vpi__g_ vyz__g_
0 0
3=h-"
Vi, =V -V, =— £ 4 L g
&0 %0
at boundary.
V3=V3—V2=O

. V3 = O, I-.E'., Vl = V2

Corollary : The potential in some region is uniquely determined if
(a) the charge density throughout the region, and
(b) the value of V on all boundaries, are specified.



3.1.6 Conductors and the Second Uniqueness Theorem

Second uniqueness theorem:

In a region containing conductors and filled with s
a specified charge density p,
the electric field is uniquely determined if the
total charge on each conductoris given. /
(The region as a whole can be bounded by -~

another conductor, or else unbounded.) /5507

could be at infinity

Proof:
Suppose both_El and £> salisfy the same configuration .

V-Ei=Llp V-E,=Llp

€0 €0
n Tl L F e o L
and g‘; Ey-day =10, gS E, -dd, = -0,
ith conducting ith conducting
surface surface

7 =l I e ]
(ﬁ Ey-da= %er: (j.) E,-da= %er

outer bourndary outer bourndary



define Ey;=FE —-E,

_% &0

for region 1n between the conductors, and
(ﬁE?, -da = q.)Ei -da —(j)EZ -da = 0 over each boundary
V5 is a constant over each conducting surface,

using _ 1 i )
V-(3E3)=V(V-E3)+ E5-(V1I3) =—E;3

Egdr= —IV+(L§E3)dr= —(j.) ViE; -da

surface

=73 (ﬁswfaceE}; a0

I volume

" Eﬂ =0 i.e., E1:E2

D



Example (by Purcell’s ):
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Is this charge configuration possible? Total
charge in each conductor is zero

i
—0 0—

Same total charge as above, so this must be
the stable configuration solution.



3.2 The Method of Images

3.2.1 The Classical Image Problem
3.2.2 The Induced Surface Charge
3.2.3 Force and Energy

3.2.4 Other Image Problems



3.2 The Method of Images

A chargT q head d above an infinite grounded plane:
Boundary conditions:

1. V =0 when z=0, since the plane 1s grounded

2. V —> 0 far from the charge,

2 =

e 1 +y2+z - d

Whatis Vv (z>0) ?
The first uniqueness theorem guarantees that there is
only one solution.

If we can get one by any means, that is the only answer.
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Forget the plane, consider an_other charge —q at (b,O,-d), for thi_s

configuration.
1:)T(J::- Vs :) =

1

q

4

Arg,

\/:cz +y3 + (: —d)'“

2

+

\/xz +y2 +(:+d)2

Y a7z OandV Otorx |y t = = |

Has same boundary conditions as the original problem, so by the
uniqueness theorem this is the solution for original problem for z>0

E(z < 0) = 0 in the original problem but we only care z>0, z< 0 is

not a concern



3.2.2 The Induced Surface Charge

EZ

-1 0 q q

O-:
47 Oz h\/x2+y2+(z—d)2 \/I2 _|_y2 —I—(Z-l—d)z’}

o(x,y)= 5\3/2
2;’1'(3.:2 +y? +(z—d) )
—qd
3/2
2;’3(?2 +d? )

27T o0

total induced charge O =
.[[ .([ 2;’1’(?‘2 - dz)

o(r,z=0)=

_qd

yzrdrdgé =—q



3.2.3 Force and Energy

The charge q is attracted toward the plane.
The force of attraction is

1 _a(-9) ,__ 1 ¢

A0 [d—(-d)]” 470 (2d)’

With 2 point charges and no conducting plane, the energy is

F = z

1 2
W =§Zf]fo(Pf) Eq.(2.36)
i=1

H@ | 7 [0 | = |

‘422'8{] d+d

1 qz

g, (2d)




3.2.3 (2)

For point charge q and the conducting plane at z = 0 the energy
is half of the energy given at above, because the field exist
onlyatz>0 ,andis zeroat z<0 ; that is

L 4 or
4reg (4d)
dh == 1 d qz _
W= ["F-di = dz (o dl =—di?)
... D 4;2'80 -..OD (22)2
_ 1 [ @ )a__ 1 4
Arey| 4z )T Amg (4d)



In general for any stationary distribution of charge

q, —q,

O O
q, —q,
O O

q; —q

O O

Find the force on charge q.




3.2.4 (2)

Conducting sphere of radius R at V=0

. R
Image charge ¢ =——¢q
a
2
R
Bl o B R > at b=7
1
2 2 P
' 4=[r +a —2racos@}2
V(r,0)= : (q"'qrj 1
i 4'=[r2+b2—2rbcos HP
=0 whenr=R
1= g 1 q*Ra

Force, F

B 4mrey (a — b)? i 4mrey (a? — R?)?



3.3 Separation of Variables

3.3.0 Fourier series and Fourier transform
3.3.1 Cartesian Coordinate

3.3.2 Spherical Coordinate



3.3 Completeness and Orthogonality:

Basic set of unit vectors in a certain coordinate can express
any vectoruniquely in the space represented by the coordinate.

N

e.g. = A A A A . : :
9 7= Wi=Vi+V,5+V.2  in3D. Cartesian Coordinates.

i=l
V..V,.V. are unique because x,),Z areorthogonal. i-j=0 i#j
=1i=j
These ideas can be extended to functions, for example functions defined in
an interval (a,b) can be considered as a vector space of functions.

Completeness: a set of functions f,,(x) is complete if for any function f (x)
fx)=2 ¢, f.(x)
n=1
Orthogonal: a set of functions is orthogonal if
| 7,6 e =0 for mzm

=const for n=m



A complete and orthogonal set of functions forms a basic set
of functions. e.g.

T . :
I smmxsmnxdx:{ﬂ v om=n k,ne N

_r T If m=n
sin(zx) 1s an orthoganal set of functions in the [-7, 7] range
Since they are odd: sin (n(-x))= —sin(#x) sinnx is a basic set

of fuctions for any odd function in [-7, 7]

Similarly cos(nx) 1s a set of basic orthonomal functions for any

even function in [-7, 7]

COS(”(—I)) = COS(HI) ; J: cos(mx) cos(nx) dx = {D Y m#n

T If m=n

] T - I
Since j sin(mx) cos(nx) dx ={ff Ef;; e

sin(nx) and cos(nx) 1s a set of basic orthonomal functions for any

function in [-7, 7]



for any function f(x)

2(x)= f(x)—zf(— x) s 0dd; A(x)= f(x)+2f(— x) < even

f(x)=g(x)+h(x)
ocId eﬁen

Fourier series is expressing a function in terms of basic functions

sinnx and cosnx
oD

f(x)= Z{:}(An sinnx + B, cosm')

| f (x)sin (nx)dx

~ T

. f (x)cos(nx)dx

A, =

N } n=12,--00

F‘i|r—tkﬂ‘p—t

1 T
BGZHJ._Kf(x)dx 4, =0



Proof: J““f f(x)-sin krdx = i r (A4, sin nx+ B, cos nx)sin (kx) dx
n=0 e

:ZD::AHEI sin (72x)sin (kx) dx
n=0 "
— Az it =0
1 or .
- Ak:;_..ﬂ f(x)sin (kx) dx

Similarly: g L7 f(x)cos (nx)dx



Example : Use the method of separation of variables to solve the
Laplace’s eq.
V(y=0)=0

Viy=n)=0
Fx=0)=V(»)

V(x—>®0)—>0

Find the potential inside this “slot”.

. Fond L 4
Laplace equation: St s =
ox oy
V(x,y)=Xx)Y(y)

2 2 2 2 2 2
5P o 1
af X=0 = X =Ad+Be ™
Ox
0%y

¥+AY 0= X =Csinkx+Dcos kx



BC. (V) V(x 5>0)—>0 = A4=0, k>0
V(x,y)= e ™ (Csinky + Dcos ky)

B.C. () ¥(y=0)=0 = D=0
V(ix,y)= e sin ky

BC (ii) V(J}:g)zo — S]nkg:ﬂ:“)kﬂ:ﬂ n:1:2:3.-.
g EE
According to the principle of superposition 7 (x,y)= > Ce 4 sin "ty
1=l a

B.C. (iii) V(x=0)=V,(») =Vp(y)=3 Cye " sink,y

; A Fourier series for
Fi=

odd function
2 f r FIoT mir k
Cﬂzgngg(y)Sinkﬂy dy '.'Isin Y sin Yy —0nzm

a a
0

l
\ 2 J



3.3.1 (4)

For V,(y) =V, =constant

2V :
CnZTOJ sin ydy

a
0 if n=even
20 (1—-cosnr) = d
=T =13 4
nir 2 if n=odd
|\ nr
4 L g, 2. s
V(-xb y) s g Z —— £ 2 Slnkny == 7'[2111 (Sinhﬂ'x )
n=13.5 a

0.8

0.6 |

ViVo 4l
0.2

0!

V/Vo

xla
via



Laplace equation in spherical coordinates :

1 0 oV 1 o (. oV 1 oV
——| #? +— sin @ +— =0
or ) rsin@ o6 068 ) r?sin’@ o*¢?

\
In cases of azimuthal symmetry V is independent of ¢ so 1o r? oR + _1 ¢ sin &ﬁ =0
r? or )] rsin@ dé ce

(
Look for a solution V(r,8)=R(1)O(H) = ii{;«z GRJ + 1 0 sin 9@] =0
or )] ©Osinfd do\ oo

— 1o ;’J@ =constant =/(/+1) and 1 0 5'1116*@ =—{(l+1)
R or or ®smad oo o7}
— Lz rzﬁ =[(l+1) tryasolution R=r"= n(n+1)=I(l+1)
R dr dr
B
n=lorn=-(I+1)= R(r)=A4Ar + e
}»+
and 2 {sin6?2 )= _10+1Osing
deo de
d*® do®

subsitute cosfd=x — (l—xz)

—2x—+I(I+1)O =0
dx? dx



solutions of (1 x2)

do®

2
49 —2x—+l(l+1)® 0
dx

are called the Legendre polynomials P(x)

05

Palx)

05

legendre polynomials

P(x)=1
B(x)=x

Bxy— (32 —1)(2
B(x)=(5x*-3x)/2

|/ s
// iy P (x)=(35x* -30x2 +3)/8
|/ Pax)
. i : = P.(x)=(63x°> —70x* +15x)/8
=X 05 0 0.5 1 1 d i
In general given by the Rodrigues formula P(x)= 21['( dx) (x2 - 1)1

so the soltion for ©(8) = B(cos )
and the seperable solution for V(r,8) is

V(r,0)= (Arl + %) B(cos )
ol

The genetal solution 1s V(r,0)= Z(A r'+ —j P(cos )
1=0



Legendre polynomials P, (x) are a complete, orthogonal set of
functions in the interval -1<x<1 they satisfy

1 T
j P.(x)P, (x)dx = j P.(cos O)P, (cos 0)sinfd6 =0 ifn #m
-1 0

2 :
= if n=m
21 +1
Example: The potential V(6 is specified on the surface of a hollow sphere of

radius R, find the potential inside the sphere.

In this case B, = 0 for all /, since potential has to be finite at the origin(center)

V(r,0)=> Ar'P(cos6)
=0

atr=R V(r,0)=V,(0)= > AR'F(cos0)
i-0

2 T
Using orthoganality relations AR’ T = J%P;{CGS 0)sin 6d 6
+1



(21+1) .
S [V, B (cos 6)sin6d6

A, =
V(r,0)= Z AR'P,(cos@) where A is given by above formula
=0

To find the potential outside the sphere: vr, ‘9) Z(A’” 4+ B )P(GOS (9)

Now A, must be zero (V—0 asr —o0)

V(r,0)= er P,(cos6)

on the surface of the sphere: V(R,0)= RB P(cosb) =V, (R.0)
=0
5 jV (6)P,(cos §)sin 6d6
R+ 21 +1
B, - (21+1)

R*"IIVD(H)H(CDS 6)sin 8d6
0



Example:
An uncharged conductive sphere of Radius R is placed in an electric field

E = E2 What is the resulting field distribution due to induced charges on the
sphere.

V(r,6) = Z[

% JP (cos )

Vb _—b-1¢ : choose V Uatz 00 > (0
V = E rcos@ for >>R

V=0 whenr—R = AR+ Bfﬂ =0 = B, = AR**

R2f+l

V(r,0)= Z A [rf + JP(COS 0)
for >R second term 1s neglegible Z Ar'P(cos@)=—E,rcosf

5
>4 I allotherd 0 birid)- B, [r - )cosé?
rl



3.4 Multipole Expansion:

Approximate Potentials at Large distances
* An electric dipole consists of two charges +qg and —q separated
by distance d. It is neutral but produces an E-field at points far
from the dipole.

V(p)= (L -1

4fr£[, 7,

fz+2 — (g)2 —rd cos 0; 1 (;)2 +rdcost

2
1’ 0 o0 d—z)
= r 4y +. = s
r}jd . o 0 Monopole Dipole
=z (1= cosl) (V~1/r) (V~1/r?)
L:l(l—gcosé’)_lm“—”l(lJriCDSQ) 4 - / .
- - I:I +@_
1 L o - ¢
( : ) 2 cos Quadrupole Octopole
o (V ~ 1/r3) (V ~ 1/r%
. qd cos
== | 0]

47y -



3.4.1

For an arbitrary localized charge distribution.

PR — j p(F) dr’
0

22 —p? 1 p'%

[H(;)z_z(g)cose}

2=rl+¢& 8=(i)(r—’—20059)

r

—2rr'cos @

OEr=>>1" € s< 7

=+ 2 e C(—getiet =28 )



) o r

"N\2 3
——[l+( )cos@+( ) (%coszﬁ—l)+(r—) (gcos36’—%cosﬁ)+---]

1l 3N (F s -
—:—[1——(—)(——20050)+—(—j (——20059) ——(—) (——20059) +---]
- v AR SN S\ r r 16

al 2 F
1 o0 2 o0 rrn
= (i) P, (cos@)p dr' = Z —an(cos 0)p dr’
S i = gk
V(r) = m r("+1) [ )P, (cos 0)p(r) dr
0.

= Ip(r') dr'+ zjr cos@ p(r')dr'+ 3 J.(r')z(%cosze—%)p(r') dr'+---]

472'8

I Monopole term Dipole term Quadrupole term

Multipole expansion



3.4.2 The Monopole and Dipole Terms

RIOROE -1 2 dominates if r>> 1
Vinon(P) = G
dip0|e Vd{p(p)= 4;80}‘%-’.?,'008@;) dT r’cOS€=};-Fr
1 1 A [
- drg F_ZF'J‘F)O dr
% 1 pr P dipole moment (vector)
dfp(p)_ dmey 2

Fl
pP= J.F’p dr{= Zqz-ﬁ-' for point charges]
i=1
A physical dipole is consist of a pair of equal and
opposite charge, tg

p=qr.—qi =q(F -7 )=qd



3.4.3 Origin of Coordinates in Multipole Expansions

Dependence of dipole moment -
on coordinate origin: v
- dt’
p=|7pdr =
: -
=|(F —a)pdr a *
=.F’pdz'—c7j‘pdz' x
= p-ag

i S O=0" " p=p



|
[ ] 3q
a
(7] a
— - . -
-2q . -2g ¥
tq

Figure 3.31

— —

o — —_—

Problem 3.27 Four particles (one of charge g, one of charge 3¢, and two of charge —2¢) are
placed as shown in Fig. 3.31, each a distance a from the origin. Find a simple approximate

formula for the potential, valid at points far from the origin. (Express your answer in spherical
coordinates.)



3.4.4 The Electric Field of a Dlpole

A pure dipole
P Pcos@
Vi (r0)= =
dip 4 e r2 4 re, r2 >
0 0
6V 2Pcos®@ & o
EI" e 3 3 e
& 4reqr
E9=_16V Psin@ < g \_// v
r 00 472’807‘ 4
1 oV
B — =1
¢ r Sin 6 a@ (a) Field of a "pure” dipole
Edzp ()= 5 (2c0s Or+sinf (9)

47?807‘

(a) Field of a "physical” dipole



