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Electrostatics

The Electrostatic Field

Divergence and Curl of Electrostatic Field
Electric Potential

Work and Energy in Electrostatics
Conductors



Coulomb’s Law (2.1.2)

/Q

q

The force on a charge Q due to a single point charge q is given
by Coulomb's law

F=L %k Reiy-r =RR
drey R?

C

gy = 8.85x 10712 the permittivity of free space



The interaction between any two charges is unaffected by the
presence of other charges.

So the force on charge Q due to charges ¢,, ¢, ¢, ... is the sum of
forces due to g, , q,q,

=F,+ F,+ F +... F, is the force on Q due to g,



The Electric Field (2.1.3) 2Q

If there are ¢ ,,q, g, charges at distances R, ,R, R,
from the charge Q:
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E(P) is the electric field at P due to source charges ¢,¢,¢q; ...



2.1.4 Continuous Charge Distributions
[)
E(P)=-L_ [ R aqe )

drre 2
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Linear charge density A
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Example: Find the electric field a distance z above the midpoint
of a straight of length 2L, which carries a uniform line charge A

Solution: ,
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Problem: Find the electric filed at a distance z above one end of a straight
line segment of length L with linear change density A.




Divergence of Fields lines and the Gauss’s law (2.2)

A single point charge q, situated at the origin Ll
o ] q . L .._:_\I{_.._.. 5
E(r)= 57 e
drey r /41

: : 1 L ! :
Because the field falls off like —, electric field gets weaker as distance increases

r2’
from the origin, and field always point radially outward, (shown as arrows with

length proportional to field strength).
These vectors can be connected to form the field lines. You can imagine they are

the paths of an infinitesimal test charge move under the force due to electric field.

The magnitude of the field is indicated by
the density of field lines.




Properties of field lines:

* Field lines emanate from a point charge symmetrically in all

directions.
« Field lines begin on positive charges and end on negative

charges (convention).
« They cannot simply stop in midair, though they may extend out

to infinity.
* Field lines can never cross each other.

4 Ly \ 1 ; # i
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Equal charges

Equal but opposite charges
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Gauss’s Law: L
Since in this model the field strength is proportional to |
the number of lines per unit area,

flux throgh a samll surface elemet Aa; = AD; = E;Aa, cos &
=FE, - Aa, = total flux = ® = Z Ef-Aaf=<£)E-da

Aa—0

The flux of E through a sphere of radius r is:

q‘)E.da:J‘ . (qﬁ)-(rzsmﬁd@d@f‘):iq
4.?23'0 }"2 &0

i.e. total number of field lines crossing the sphere is Ei, In general the flux
0

through any surface enclosing the charge gis Ei.
0

If there are more than one charge, according to the principle of
superposition, the total field is the sum of all the individual fields:



Gauss’s Law in integral form 95 E -da= Z(Si'?f) — Qenjnsed
0 0

according to the divergence theorem

$ E-da= [ (V-Eydr= Lo,

surface volume 0

ut g_DQE”C_ | (— p(r)dt :»j(v E)dr = Ip(r)dr

10Iume V€

: L - 1
So the Gauss’s law in differential form V.E(r)= — o(r)
0



This can be derived directly from the definition of electric field:

T 1 jé —/ ’
E(r)= I —2p(r Jdz Rt 1

47[80 all space

Taking divergence of E

47[80 all S.LaceV ( : il )j /

(the divergence calculated atr, r-dependence is containedin R =r-r’)

V-E(r)=

~

But V() =475°(R)
R

(r =) p(r')de’ =~ p(r)
&0

Thus V.E =




2.2.3 Application of Gauss’s Law

Example 1 Find the field outside a uniformly charged sphere

of radius 4

. 1
CJS E-Cﬁ:—Qch
)

surface
E point radially outward ,as does da

qr) E-da=f|E|da

surface

Sol:

E is constant over the spherical Gaussian surface

¢ |Elda=|E| ¢ da=|E|Anr*
surface surface
1 I g

Thus |E|4zr’=—q —> E=

S f
€0 drey r

( Gaussian Surface:

surface through which
the flux of a vector field
is calculated)

What is the field inside
the sphere?



Example 2: Find the electric field inside the cylinder which
contains a charge density p = kr
Solution:

E
/ Gaussian surface

= 1
st E-da=—Q0, O Y )
80 —_—f - el UGSy

surface

\ =i
The enclosed charge is E
Qenc = Ipdr = I(kl"')(r'dr'd¢d2) e 27Tli‘(;ﬂ 7/"2dr" = %ﬂk[r?)
(E-da=||Elda=|E|| da=|E|27r! (by symmetry)
1 2 3 = | Y
thus |E‘27zrl =——gklr" —>| E=—krr

80 3 380




Example 3: An infinite plane carries a uniform surface charge. o
Find its electric field.

Solution: Draw a "Gaussian pillbox
Apply Gauss’s law to this surface

— 1
4) E-da= _Qenc
surface =0
By symmetry, E points away from the plane
thus, the top and bottom surfaces yields

J' E-da=2 A| E| (there is no contribution from sides)
e O' =
2|E=—cd o | E=i
€0 €0




Example 4 Two infinite parallel planes carry equal but opposite
uniform charge densities +o¢ .Find the field in
each of the three regions.

by ™~
N +94,)
—(%5,.) c
2 H%e) Field of
(1 (1D (110 o i left plate
! \\ Field of
\\§ N : : ' right plate
%)
/ / +(02€0) +( 280) ‘(%50)
+0 -0 +0 i

Field from each plate adds in between plates and cancels elsewhere .



The Curl of E

Calculate the line integral of the field from a point

charge q at origin from some point a to another point 5: /= "

b L i
J'E-dl '
a a
E = L 4 r

dre 2

k . S
dl =dri+rd0 0+rsinfdp p ~ E-dl =———Ldr

In spherical coordinate

g
wbiig g

. Ameg\1, 1

This integral is independent of path. It depends on the two end

points = qSE-d7=0

by Stokes’ theorem = VxE=0

it 1 b —1
a 4rgya p? 4rey r




Electrical potential

P
define a function: V(P) = —f{;oE - dl /
0

Where O is some standard reference point ; V depends only on the
point P. Vis called the electric potential.

b - — a— - h .
V(b)-V(a)= —ISE-dZ —(—J'SE-dZ)z —jaE-dz
The fundamental theorem for gradients

V(b)-V(a)= [ (VV)-d

S0 jj(VV)-dZ:—ij-dZ —> | E

-VV

As expected (vector whose curl is zero is equal to the gradient of some scalar field) .



Reference point p

Changing the reference point amounts to adds a
constant to the potential

V'(p) =~ [ E-dl=—[ E-dl+ [  E-dl &

P
=K+ f E-dl=K+V(p) (Where K is a constant)
0

Since the reference point is arbitrary, potential is determined only up
to a constant. It does not affect the potential difference between two
points:

Vi(b)=V'(a) =V (b)=V(a)

Since the derivative of a constantis zero: VvV =VV'for differentV, the
field E remains the same.

Usually zero potential is set at infinity V(c) =0
soV(P)=~—[ E-dl= [, E-dl



Potential obeys the superposition principle
E= E1 + E2 +---

Integrating from the common reference point to p
7 7 7
[E-di=[¥y-dl+[Ey-dl+--

V=V, +Vy+-
Unit of potential:

Unitof E: Newton/Coulomb
= E.dl : Newton. Meter/Coulomb : Joule/Coulomb = Volt

This is also obvious from the fact that the electrical potential is also the
amount of work done to bring a unit charge from infinity.



2.3.2

Example 2.6 Find the potential inside and outside a spherical
shell of radius R, which carries a uniform surface
charge (the total charge is q).

solutign: 2
Ein =0 Eout = 47}50 :]2 4
for r>R: g
Sl gl 1lgl G
V(7)= J.ooE 4 drgy r'|  Amey v
for r<R:
I g ' !
V(R)= 4rey R Aoiseats s 47;50 R
o
E._=0



2.3.3 Poisson’s & Laplace’s Equations for potential

V-E=£ since E=-VV = V-(—VV):—VZV:i
& T &0

Poisson’s Eq. V2V = —%

p =0 V2V =0 Laplace’s eq.




2.3.4 The Potential of a Localized Charge Distribution

E:—VV V:—I "Edr' Voo=0
1
et I e g M g (S
s Are I 0 12 & Arey r'|,  Amey 1
- P
« Potential for a point charge
q el
)= 472'6‘0 R h= |r rP‘ q

P
» Potential for a collection of charge 4., /

V(P)= 4;ng2% R =




Potential of a continuous distribution

for volume charge for a line charge for a surface charge
0q = pdr oq=Adl 0q =oda
V S P oy A | O
(P) = 4%0 j dr  V(P)= 4%0 odl  V(P)= e j da
Corresponding electric field i v R
R R2 E(r)=-VV(r)
- ol 1 ’f; —’f;—
E(P) = e [ = pdrt E(P)_Fgo j Rz/uz
E(P) = I 5 da

47Z'<9 0 R2



Example(2.8) : Find the potential of a uniformly charged spherical
shell of radius R (using above formulae).

1 o} ;
v Aze, J . a. r* =R*+2° —2Rzcos @
) I 2sin6'do’ do'
0 o
JR? + 22 —2Rzco0s 8’
. 29:325]‘ . Hne 4o’
0 /R? + 22 —2Rzcos 8’
T
:23325(%\/32“2—23:@059’)
Z 0
. gy 2 | pE i )
. ”f“’" e o
Ko q .
V - R+z)—-(z—R - outside
e 259 L( ] ) - Egz Aduep + total charge
Ro Ro q L q = 4moR?
S e Rtz (R )] — = d
()= 1R+ - (R-2]=BT= L inside



2.3.5 Electrostatic Boundary Conditions

Electrostatic problem @

*Superposition

Coulomb law

The above equations are differential or integral.
For a unique solution, we need boundary conditions. (e.g. , V(«)=0 )
(boundary value problem in dynamics called initial value problem.)



Electric field B.C. at surface with charge (2.3.5(2)

Field normal (1) to surface:

E.da___Qenc ___O_A

&0 &0

surface

= E_I_a.bove = EJ_below A

AR
EJ_above = EJ_below = E.B'

CﬁE-dl =) (ie.VxE=0)

E | above E | below

~

- [ 7 T
So in vector form:  |Egsove ~ Lpelow = &




Potential boundary conditions (2.3.5 (3))

" Vabove = Voelow = —j 5 E-di > 0
Vabove = Vbelow
EJ_above = EJ_below = E=-VV

€0

23

. |0 0 e
' %Vabove 1 %Vbelow = =
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Work and Energy in Electrostatics

The Work Done in Moving a Charge
The Energy of a Point Charge Distribution
The Energy of a Continuous Charge Distribution

Comments on Electrostatic Energy



2.4.1 The Work Done in Moving a charge

In an electric field E a test charge Q feels a force QE

The total work done in moving fromato b

w=["F-di=0[ E-di=0[V(s)-V(a)]

V(b)—V(a)=% .

q2 e .({i

So, work done in bring a charge from « to P:

W =0V (P)-V ()] =0V (P)

|

V(0)=0



2.4.2 The Energy of a Point Charge Distribution

It takes no work to bring in first charges

wy=0 forqy

Work needed to bring in q2 IS :

. 1. 49
W2 _qz[47z_€o R12]

471'80 qz(Rlz

Work needed to bring in q3 IS :

gl ]

g . D
472'80 R13 472'80 R23

- 471'80 Ane, B3 (R13 R23)

Work needed to bringin q, is :

oz il . 93
" Tmey 1 [R14 Ry R34]




2.4.2

Total work
W=W,+W_+ W, +W,
1 [919‘2 LN93 DB Dda | 9294 9394)
4»‘%‘0 P! Rb "Ry Ry Ry Ruy
42301 1;:::-1
Ry =R, = zz% 15y 3L
1
8'?2-80'lr lj 1 le jil 4?2'80 RU
J#i J#i
n 1 q:
=3 V(B)= Y g 7
2§ ( ) 1_214?2'80 Rg



2.4.3 The Energy of a Continuous Charge Distribution

og=pdr
W = lj pVik T |
2 Volume charge density

p=&V-E  V(EV)=(V-E)V+E-(VV)
= (V-E)Vdcé/go [V-(EV)de+[E-(-VV)dr |
(E=-VV)

=%0( § VE-da+ § E’dr)

surface volume

. & 2
surface > £ -0 = WZEO I L dr

all space




2.4.3

Example 2.8 Find the energy of a uniformly charged spherical
shell of total charge q and radius R

1 ¢
Sol.1: g=47R’c y=—-=
9 Admey R
2
W:lijdf:ljchda:l— ! ia?a: L 4
2 2 2° A4ngy R 87wy R

= 1 . 2 q°
Sol.2: E= %r E” = o
ey r (4mey)r
2
W = S_OJ'EZdr: E_OJ' 9 5 14 (rz sin@d@dgadr)
2 2 outside sphare (4 ﬂ'go) },-




2.4.4 Comments on Electrostatic Energy

i) Where is the energy stored? In charge or in field ?

Both are fine in ES. But, it is useful to regard the energy
as being stored in the field

E?2
€0 5 Energy per unit volume

ii) For a discrete point charge distribution Electrostatic energy in the field

=20

E*dr — Energy >0
D Jall space

Potential energy of the charges:

Zﬂ: Z QIQJ which could be <0 W — 1 4
ie: for two charges q, -q 47ey 19




ii) For a discrete point charge distribution Electrostatic energy in the field

] E’dr = Energy >0
2 Jall space

Potential energy of the charges:

2
which could be <0 1 —q
ie: for two charges g, -q

4;:?5

e

j}l

¥
This contradiction is because, in W = —Z

potential of ¢; due to its own field is not considered, i.e. the energy needed to
create the charge ¢;, which is infinite for a point charge.

1 gz
8mey R

In quantum electrodynamics this is solved by renormalizing, for classical EM we
will ignore this self of point charge.

—> o as R — o«




(iii)The superposition principle does not apply for ES energy
_b0 ([ 2 _ &0 [ 2
Wl = > J.El dr Wz = ) J.Ezd‘[
€0
Wiot = ?

. ‘%0 [(E2 + E2 +2F, - E,)dr

= le +W2 +50J.(El 'Ez)df

.(El +Ez)2df




2.5 Conductors

2.5.1 Basic Properties of Conductors
2.5.2 Induced Charges

2.5.3 The Surface Charge on a Conductor;
the Force on a Surface Charge

2.5.4 Capacitors



2.5.1 Basic Properties of Conductors

Charges are free to move in a conductor, a perfect conductor
has an infinite amount of free chargers, metals come pretty

close.

(1) inside a conductor electric field is zero

otherwise, the free charges will move to make F 0
inside the conductor

(2) p =0 inside a conductor

yms & po 5 50
=0

(3) Any net charge resides on the surface

(4) Potential is constant throughouta conductor (equipotential).

V(b)-V(a) = ij-df 0 0

S It Bk



2.5.1 (2)

(5) Electric field just outside the conductoris perpendicular to the surface

Otherwise, E; will move the free charge to make FE perpendicular to the
surface, justoutside a conductor

Free charges staying on the surface have the a minimum energy (charge in a
conductor distribute to a configuration that minimize the energy like any other free

dynamic system).

eqg. — , qz
Energy=F_ =
2 rey R
Ey =0 Wi, =0
3 q2
For a volume Energy = Ev = Ev > Es
distribution 20?276‘0 R



2.5.2 Induced Charges

§

Charge q pulls minus charges in the conductor towards it and push
plus charges away.

This induced charge distribution is also neutralize the electric field
inside the conductor.

o \
Inside a conductive cavity electric field is zero. / @ \
Faraday cage: shield any external electric fields. L/ = £ Jl
| |]
T= 7 xl\a xl\‘x _,,---"/ r
OE-d =0 f
™ \ j.f

e E-dl =0 a,b are arbitrary chosen
in r;a%ity

= Efn cavity = 0



2.5.2 Induced Charge

Example 2.9 A spherical conductor has a cavity of irregular shape. If a charge
g is placed inside the cavity what is the field outside the sphere?

Conductor

Charge -g induced on the cavity surface distributes to shield g and to
make E=0 in the conductor

from charge conservation and symmetry, induced +g charge uniformly
distributes on the surface

LR 1 q n
HB)
)




Problem 2.35 A metal sphere of radius R, carrving charge ¢, is surrounded by a thick concentric
metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge.

(a) Find the surface charge density o at R, at a, and at b,

(b) Find the potential at the center, using infinity as the reference point.

(¢) Now the outer surface is touched to a grounding wire, which lowers its potential to zero
(same as at infinity). How do your answers to (a) and (b) change?




2.5.3 The Surface Charge on a Conductor

_ _ o .
Eabmfe - Ebelmw =—n
&0

Ez'n =0 or Ebe&'ow =0

YV =F o ov__o

above =1 O ~ -
£0 on €0

If we know V or E, we can get o.



Force on a surface charge:

Due to surface charge electric field is different above and

below the surface.
Take a small patch on the surface, The field due to

change on the patch above /below, very close to the

- 0
surface is — Kk,
2[:.3

Field due to charges outside the patch = E}Dmer

-~

. - d 2 . o
Eabm-‘e = Em‘her = 7 k Ebefmt-’ = Eﬂrher o k
EO 250
. i . .
Eother = E(Eabm-'e + Epelow) o Em-'erage

Force on the charge in the patch JEOmeT = Jﬁavemge.

i - : k T =
In case of a conductor field inside is zero, and —n outside

€o

i

S =20 Epove =
s 28ﬂ _ o £ 0 b
electrostatic pressure P = = E




Problem 2.37 Two large metal plates (cach of arca A) are held a distance d apart. Suppose
we put a charge Q on cach plate; what is the electrostatic pressure on the plates?

Problem 2.38 A metal sphere of radius R carries a totdl charge Q. What is the force of
repulsion between the “northern™ hemisphere and the “southern” hemisphere?



2.5.4 Capacitors

Consider 2 conductors (Fig 2.53)

The potential difference
V=V —-V_= _J-((Jr))E dl (V 1s constant.)

1 r

E= >
drgy ? r

pdt  double p —double Q —double E —double 7

Define the ratio between O and ¥V to be capacitance

C= = g geometrical quantity
in mks 1 farad(F)=1 Coulomb / volt
\ 10 °F : microfarad

iInconveniently large ;
10 - F : picofarad



2.5.4 (2)

Example: Find the capacitance of a “parallel-plate capacitor”?

g2l
80 Ago
V=E-d=£d
A(C,'O
c=4é



2.5.4 (3)

Example: Find capacitance of two concentric spherical shells
with radiiaand b .
-0

F=-—1 2;

drey 12
V=—["E-dl =- O jal,,_ 2 (11

b 4rey b p2 dreg\a b

C= 2 =47, ab

Vv (b—a)



2.5.4 (4)
The work to charge up a capacitor

dW =Vdg = (%)dq

24y, 107 1, 1.0



2.5.1 (3)

Example : A point charge g at the center of a spherical conducting
shell. How much induced charge will accumulate there?
Solution :

*E. =0 ¢ induced

nArat o, =— G =
< 1 5 47 a2
charge conservation
1
Anb* oy =—4ra’o, Oy = Z——%
Ein =0 4

Qenc =4+ Ginduced = 0
Dinduecd = —49



