Special Relativity I: Spacetime

Basic Definitions and Postulates

- Event, spacetime manifold: Spacetime is the set of all possible locations of physical phenomena, in space and time. In ordinary approaches it is modeled as a 4-dimensional manifold M, a set of elements called events with suitable sets of coordinate systems used to identify events.
- Inertial coordinates: An inertial coordinate system $\left\{x^{\mu}\right\}=\{(t, \mathbf{x})\}$ on M is one based on an inertial observer. Conventionally, $\mu=0,1,2,3 ; x^{0}=t$ is time measured by a clock carried by the inertial observer. The location (worldline) of that observer is assumed to be at $\mathbf{x}=0$. Here we will only consider explicitly Cartesian coordinates. Coordinate system of other types (spherical, cylindrical, etc) are related to Cartesian ones (with the same t axis) by the usual coordinate transformations.
- Postulate 1: (Relativity) The laws of physics are the same in all inertial reference frames. This principle was in effect used in prerelativity physics, but it gained prominence only with special relativity.
- Postulate 2: (Speed of light) The speed of light has the same value in all reference frames. This fact is highly non-intuitive, but it follows from the results of the Michelson-Morley experiment.
- Causality: Because the speed of light is independent of the source, each event $p \in M$ has an absolute past (the set of events that can influence p) and a future (the set of events that p can influence). The boundaries of those sets are the light cone of p, representing events that can be reached moving towards/from p at the speed of light. Knowing the light cones of all $p \in M$ is equivalent to knowing the causal structure of M.
- Worldline: A 1D line in M representing the set of locations of a particle in time. Because particles cannot move faster than light, each point along a worldline must be in the past or future of every other one.
- Coordinates, space, simultaneity: Coordinate systems (when not considering gravity and curved spacetime) ordinarily consist of one timelike coordinate t whose value represents the reading of a clock at each location, and three spacelike coordinates \mathbf{x}. Space is the set of all events in M with the same value of t; the geometry of such a surface is the usual Euclidean one, and different events in it are called simultaneous.

Lorentz Trasformations

- Poincaré and Lorentz trasformations: Poincaré transformations are the most general linear maps $\Lambda: M \rightarrow$ M that take inertial coordinate systems to other inertial coordinate systems, consistently with the speed of light postulate. The simplest ones are translations $x^{\mu} \mapsto x^{\mu}+a^{\mu}$, where the a^{μ} are constants. The remaining ones, rotations and boosts, are Lorentz trasformations. Rotations can be represented by matrices R such that $\mathbf{x} \mapsto \mathbf{x}^{\prime}=R \mathbf{x}$, as in Euclidean geometry. For example, for a rotation by an angle θ around the z axis,

$$
R=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Boosts are transformations between frames set up by observers with non-zero relative velocities. For example, if observer O^{\prime} is moving with velocity $\mathbf{v}=v \mathbf{i}$ with respect to observer O, then $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$, where

$$
\Lambda=\left(\begin{array}{cc}
\gamma & -\gamma v \\
-\gamma v & \gamma
\end{array}\right), \quad \gamma:=\left(1-\beta^{2}\right)^{-1 / 2}, \quad \beta:=v / c
$$

- Invariant interval: For any $\Delta x^{\mu}=x^{\mu}-x^{\mu}$, all Poincaré transformations leave invariant the expression

$$
(\Delta s)^{2}=-c^{2}(\Delta t)^{2}+(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}
$$

which therefore represents a coordinate independent, physically meaningful quantity characterizing the relationship between two events: it is the proper time elapsed $\Delta \tau=\sqrt{-\Delta s^{2}}$ if $\Delta s^{2}<0$, or the proper length $L_{0}=\sqrt{\Delta s^{2}}$ if $\Delta s^{2}>0$. Pairs of events for which Δs^{2} is negative, zero or positive, respectively, are called timelike, null and spacelike related. Note: We will usually assume that in our units the numerical value of the speed of light is 1 ; for example, we might be measuring times in seconds and distances in light-seconds.

- The Lorentz group: In Euclidean geometry the squared length of a vector \mathbf{x} is given by $\|\mathbf{x}\|^{2}:=\mathbf{x} \cdot \mathbf{x}$, which can also be written in matrix form as $\mathbf{x}^{T} 1 \mathbf{x}$, and the angle between vectors \mathbf{x} and \mathbf{y} can be obtained from the dot product $\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\mathrm{T}} 1 \mathbf{y}$, where here " 1 " is the identity matrix. Since a rotation $\mathbf{x} \mapsto R \mathbf{x}$ (under which $\mathbf{x}^{\mathrm{T}} \mapsto \mathbf{x}^{\mathrm{T}} R^{\mathrm{T}}$) does not change lengths or angles, the matrix R must be such that

$$
R^{\mathrm{T}} 1 R=R^{\mathrm{T}} R=1, \quad \text { i.e. , } \quad R^{\mathrm{T}}=R^{-1}(R \text { is an orthogonal matrix }) .
$$

If we take the determinant of the equality $R^{\mathrm{T}} 1 R=1$ (" R preserves the matrix 1 ") and use $\operatorname{det} R=\operatorname{det} R^{\mathrm{T}}$, we get $(\operatorname{det} R)^{2}=1$. A matrix with $\operatorname{det} R=-1$ would invert the orientation of the axes, so we choose $\operatorname{det} R=1$ (R is a special matrix). Because rotations are 3×3 matrices, we end up with the group $\mathrm{SO}(3)$.

Lorentz Trasformations and Minkowski Spacetime

- The Minkowski metric: The geometry of special relativity is encoded in an analogous but different property of Lorentz transformations. Since the squared interval can be written as

$$
(\Delta s)^{2}=\Delta x^{\mu} \eta_{\mu \nu} \Delta x^{\nu}=\Delta x^{\mathrm{T}} \eta \Delta x
$$

where $\eta_{\mu \nu}$ is the Minkowski metric, given in the usual coordinates by the matrix

$$
\eta=\operatorname{diag}(-1,1,1,1)
$$

Lorentz transformations are such that

$$
\Delta x^{\mathrm{T}} \Lambda^{\mathrm{T}} \eta \Lambda \Delta x=1 \quad \text { for all } \quad \Delta x^{\mu}, \quad \text { or } \quad \Lambda^{\mathrm{T}} \eta \Lambda=1
$$

Thus, Lorentz transformations are those preserving the 4×4 diagonal matrix η with one eigenvalue of the opposite sign, i.e., the special orthogonal group $\mathrm{SO}(3,1)$.

- Meaning of the interval: If two events x and x^{\prime} are such that $(\Delta s)^{2}=0$, then...
- Spacetime geometry: Spacetime in special relativity is an affine manifold with a metric $\eta_{\mu \nu}$ with which geometrical quantities can be calculated. For example, the length of a spacelike curve γ between A and B is

$$
L=\int_{A}^{B} \mathrm{~d} \lambda \sqrt{\eta_{\mu \nu} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \lambda} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} \lambda}} .
$$

\diamond Spacetime diagrams: Representing on a spacetime diagram spacetime subsets and transformations, the relativity of simultaneity, proper time and time dilation, proper length and length contraction.

Reading

Our textbook: Carroll, Chapter 1 up to Section 3; Other books: Wald, Ch 2; Schutz, Ch 2.

