Phys 729 – General Relativity and Gravitation – Fall 2015 Homework Assignment #5, due Wednesday, October 28

In your solutions to the following problems, please include full sentences explaining all of the steps in your reasoning. A solution that includes only equations or very few words will not be considered complete.

Problem #1 (Phys 503)

Show that if K^{μ} is a Killing vector field on a manifold with metric $(M, g_{\mu\nu})$ and a particle moves along a geodesic $x^{\mu}(\tau)$ with 4-velocity $u^{\mu} = dx^{\mu}/d\tau$, then the component of the particle's 4-momentum mu^{μ} along K^{μ} is constant along the worldline.

Problem #1 (Phys 729)

Let M be a manifold with Lorentzian metric $g_{\mu\nu}$ and associated derivative operator ∇_{μ} . A function on M which is a solution of the equation $\nabla_{\mu}\nabla^{\mu}\alpha = 0$ is called a *harmonic function*. In the case where M is a 2-dimensional manifold, let α be harmonic and let $\epsilon_{\mu\nu}$ be an antisymmetric tensor satisfying $\epsilon_{\mu\nu} \epsilon^{\mu\nu} = -2$. Consider the equation $\nabla_{\mu}\beta = \epsilon_{\mu\nu}\nabla^{\nu}\alpha$ for a function β .

(a) Show that the integrability conditions for this equation are satisfied, and thus, locally, there exists a solution, β . Show that β is also harmonic, $\nabla_{\mu}\nabla^{\mu}\beta = 0$. (β is called the harmonic function *conjugate* to α .) (b) By choosing α and β as coordinates on M, show that the metric can be put in the form

$$ds^{2} = \pm \Omega^{2}(\alpha, \beta) \left[-d\alpha^{2} + d\beta^{2} \right]$$

Reminder: A pair of coupled partial differential equations of the form $\partial f/\partial x^{\mu} = F_{\mu}$ for $\mu = 1, 2$, have a solution f iff the integrability conditions $\partial F_{\mu}/\partial x^{\nu} = \partial F_{\nu}/\partial x^{\mu}$ are satisfied.

Problem #2

Show that in two dimensions the Riemann tensor of any metric takes the form $R_{abcd} = R g_{a[c} g_{d]b}$.

(Hint: Using the fact that in n dimensions the Riemann tensor has $\frac{1}{12}n^2(n^2-1)$ independent components, show that $Rg_{a[c}g_{d]b}$ has the right number of independent components and all of the symmetries of the Riemann tensor.)

Problem #3

Carroll, Chapter 5, Exercise 1.