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Magnetism. 3: Mean-Field Ferromagnetism

General Considerations

• Idea: Ferromagnetic materials are an example of system in which each atom has a permanent magnetic
dipole moment ~µ, related to its spin by ~µ = gµ0~s, where µ0 = eh̄/2mc is the Bohr magneton and g a
dimensionless number of order unity (the Landé g-factor). Contrary to what happens in paramagnetic
materials, however, electrons in neighboring atoms interact with each other, mostly through an electrostatic
exchange interaction. In a ferromagnet therefore even classically ZN 6= ZN1 /N !, and thermal fluctuations
have to compete not just with the possible aligning effect of an external magnetic field, but with the intrinsic
aligning effect of the interactions as well. We will assume that the atoms are located at fixed lattice sites i.

• Hamiltonian: Since we neglect translational motion, the effective degrees of freedom are simply the values
of the spins ~si at all lattice sites. The exchange interaction between the electrons can be effectively described

by a symmetric matrix J ij , so their total Hamiltonian in an external magnetic field ~Bext = B ẑ is

H = −
∑

i, j 6=i
J ij ~si · ~sj −

∑
i
~µi · ~Bext,i .

We now notice that each ~si sees an effective magnetic field due to both ~Bext,i and the effect of all other spins,

H = −gµ0

∑
i
~Beff,i · ~si , with ~Beff,i := ~Bext,i + (gµ0)−1

∑
j 6=i

J ij ~sj .

• Weiss mean-field theory: Although in principle any two spins in the lattice interact with each other and
each ~si feels the actual value of all other spins, in this theory we start by approximating the situation by an
interaction of ~si with the mean value of each of the other spins, and use as Hamiltonian

H ′ = −gµ0

∑
i
〈 ~Beff,i〉 · ~si , with 〈 ~Beff,i〉 = ~Bext,i + (gµ0)−1

∑
j 6=i

J ij 〈~sj〉 .

Notice that this ignores correlations, which actually changes the physical problem. Neglecting boundary
effects, if the system (the lattice and the J ij) has symmetries under translations and rotations around the

z axis, in the mean-field approach the effective magnetic field will be parallel (or antiparallel) to ~Bext and
its z component 〈Beff,i〉 = B + (gµ0)−1

∑
j 6=i J

ij 〈sj,z〉. The set of solutions for the {~si} will then have the
same symmetries, though this does not imply that in one solution all ~si do, or have the same value.

Mean Magnetization

• Goal: Choose again coordinates such that 〈 ~Beff,i〉 = 〈Beff,i〉 ẑ. We want to find M̄ =
∑
i〈µi〉 = gµ0

∑
i〈si〉.

• Setup: We will treat the system quantum mechanically. We could calculate F = −k
B
T lnZ and M̄ =

−∂F/∂B|T , or use the density matrix and find the mean value of the spin directly as 〈si〉 = tr(ρ̂ ŝi). In our

approximation Ĥ ′ is a sum of terms from individual spins so, since the eigenvalues of ŝi = ŝi,z are si = ± 1
2 h̄,

〈si〉 =
tr ŝi e−βĤ

′

tr e−βĤ′
=

∑
si
si eβgµ0〈Beff,i〉si∑
si

eβgµ0〈Beff,i〉si

=
h̄

2
tanh

(
1
2 βgµ0h̄ 〈Beff,i〉

)
=
h̄

2
tanh

{
1
2 βh̄ (gµ0B +

∑
j 6=iJ

ij〈sj〉)
}
.

If all the 〈si〉 are the same (note–this is not true in antiferromagnetic materials), we can denote their value
simply by 〈s〉. We then introduce the quantities J̃ :=

∑
j 6=iJ

ij (for example, if J ij = J when i and j are

nearest neighbors and 0 otherwise, then J̃ = νJ , where ν is the number of nearest neighbors of each lattice
site), x := 1

2 βh̄J̃〈s〉 and b := 1
2 βh̄gµ0B,

〈s〉 =
h̄

2
tanh

{
1
2 βh̄ (J̃〈s〉+ gµ0B)

}
, or

4

βh̄2J̃
x = tanh(x+ b).
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The most interesting case is ~Bext = 0, which leads to a spontaneous magnetization M̄ = N〈µz〉 = Ngµ0〈sz〉.

• Graphical solution: For a fixed value of β, the solutions for 〈s〉 correspond to the values of x where the
straight line (4/βh̄2J̃)x and the curve tanh(x+ b) intersect. [∗ see the plot ∗]

• Phase transition: When B = 0 (or b = 0), the solutions are qualitatively different for T above and below
the critical Curie temperature,

Tc =
h̄2J̃

4k
B

.

High temperature: For 4/βh̄2J̃ ≥ 1, or T > Tc, there is 1 solution, x = 0 (paramagnetism).

Low temperature: For 4/βh̄2J̃ < 1, or T < Tc, there are three solutions, x = 0 and x±, the two new
ones corresponding to spontaneous magnetization. To determine which solutions actually occur and are
physical, we study the susceptibility χ, below. (Another approach would be to use general thermodynamical
considerations on phase transitions and stability.)

• Remark: When ~Bext = 0, only the set of solutions must be symmetric about 〈s〉 = 0, but an individual
solution can have either 〈s〉 > 0 or 〈s〉 < 0. This is an example of spontaneous breaking of symmetry.

Susceptibility

• Calculation: To calculate χ ∝ ∂〈s〉/∂B for a single atom, we need to reintroduce an external magnetic

field ~Bext = B ẑ. Then from the implicit expression above for 〈s〉 above we get

〈s〉 =
h̄

2
tanh

(
1
2 βh̄ (J̃〈s〉+ gµ0B)

)
, and χ :=

∂〈s〉
∂B

=
h̄

4

βh̄ (J̃χ+ gµ0)

cosh2
(

1
2 βh̄ (J̃〈s〉+ gµ0B)

) .
(To simplify the plot for a graphical solution, in this case we can define x := 1

2 βh̄ (J̃〈s〉+ gµ0B).)

• Physical value of 〈s〉 for B = 0: Setting B = 0 and 〈s〉 = 0 in the last equation and simplifying, we find
that the zero-field susceptibility is

χ(T ) =
1

4k
B

1

T − Tc

, Tc =
h̄2J̃

4k
B

.

Thus, for T < Tc the susceptibility χ would be negative, which signals an unstable state and indicates that
〈s〉 = 0 is not a physical solution.

• Phase transition: As T approaches Tc, the (T−Tc)−1 behavior of χ denotes a second-order phase transition
with order parameter T and critical exponent −1 (associated with a SO(3) 7→ SO(2) phase transition).

? Remark: One can also see the phase transition by calculating the mean energy Ē(T ) and the heat capacity
C = ∂Ē/∂T for B = 0.

Improved Models

• Idea: The Weiss mean-field theory of ferromagnetism predicts the existence of a phase transition in every
dimensionality. More detailed models, such as the Ising model and the Heisenberg models, make qualitatively
different predictions, including the absence of a phase transition in one dimension. Some of these models
can be exactly solved, others need to be treated with other approximation methods or numerically.

Reading

• Course textbook: Kennett, § 10.2.
• Other books: Pathria & Beale, Chapter 12, especially § 12.5; Chandler, § 5.4–5.5 (pp 131–138); Plischke
& Bergersen, mentioned in § 1.8; Reif, §§ 10.6–10.7, including a clear physical explanation of the exchange
interaction; Schwabl, §§ 6.6 and 7.1.2.


