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Non-Ideal Gases. 1: Two General Approaches

• The system: Consider a gas whose pressure equation of state departs from pV = Nk
B
T because its

Hamiltonian includes pairwise interaction potential terms of the form φij(ri, rj) = φ(|ri − rj |), where φ(r)
has a strongly repulsive short-range behavior and a weakly attractive one for large values of r,

H =

N∑
i=1

~p 2
i

2m
+ U(r) =

N∑
i=1

~p 2
i

2m
+
∑
i<j

φij(ri, rj) .

We will develop two general approaches to calculating approximate equations of state for this gas.

A. Mean-Field Derivation of the van der Waals Equation of State

• Idea: The mean-field approximation is a pretty crude one in which fluctuations and correlations between
particles are ignored, but it allows us to take into account some qualitative features of non-ideal gases and
to derive the equation of state for the van der Waals fluid, a commonly used model for a dilute gas.

• Setup: Assume that the interparticle potential energy can be thought of as the sum of two terms,

φ(r) = φhc(r) + φlr(r) ,

where the hard-core term φhc is infinite for r < r0, and φlr is a regular (negative) function. This models
potentials of the Lennard-Jones form, for example. The equation of state can be obtained from

ZN =
ζN

λ3N
T N !

∫
d3Nr e−β Σi<jφ(rij) .

where ζ is any applicable part of the partition function that does not depend on r (for example, ζ = gs).

• Mean field: On average, the field felt by the j-th particle due to its interactions with the remaining ones is∑
i 6=j

φlr(rij) ≈ (N − 1)
1

V

∫
d3r φlr(r) = (N − 1) φ̄lr , so

∑
j, i<j

φlr(rij) ≈ 1
2 N

2 φ̄lr .

This means that the N -particle partition function can be approximated by (setting ζ = 1 here)

ZN ≈
1

λ3N
T N !

(∫
rij>r0

d3Nr
)

e−βN
2φ̄lr/2 ≈ (V −Nb)N

λ3N
T N !

eβaN
2/V ,

where the (positive) parameter a defined by φ̄lr =: −2a/V summarizes the effect of the weakly attractive
potential, and b := 4

3 πr
3
0 is the effective volume of each molecule.

• Equation of state: The Helmholtz free energy and the pressure are then obtained as usual,

F = −k
B
T lnZ = −Nk

B
T ln

V −Nb
λ3
T

+ k
B
T lnN !− aN2

V
, p = −∂F

∂V

∣∣∣
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=
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B
T

V −Nb
− aN2

V 2
.

This is the van der Waals equation of state.

• Mean energy: Starting from this microscopic model and the partition function we can also find the
remaining equations of state for thi non-ideal gas, such as the mean energy,

Ē = − ∂

∂β
lnZN = − ∂

∂β
ln

[
(V −Nb)N

λ3N
T N !

eβaN
2/V

]
=

∂
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(
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βaN2

V

)
= 3

2N k
B
T − aN2

V
,

where we have used the fact that λT = (h2β/2πm)1/2. In Kennett’s notation the thermal wavelength cn be
replaced by λ−3

T =: nQ, the quantum density. [? Find the entropy S and chemical potential µ.]
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B. Systematic Calculation of the Virial Coefficients

• Idea: One limitation of the mean-field approximation is that it does not indicate directly what steps one
can take to improve upon it taking correlations into account. We will therefore develop a different procedure
for systematically calculating the virial coefficients for a non-ideal gas.

• Approach: In weakly interacting gases we can think of the departures from ideal gas behavior as arising
gradually, with increasing number density, from interactions among increasingly larger subsets of particles.
We then start with the grand canonical partition function, which is a useful tool for relating effects arising
from interactions among subsets of the N particles, even if we think of N as fixed.

• Setup: We can write down the classical grand canonical Zg = tr e−β(H−µN) as

Zg =

∞∑
N=0

ZN z
N , with ZN = trN e−βH =

1

N !h3N

∫
d3Nr

∫
d3Np e−βH =

1

N !λ3N
T

∫
d3Nr e−βU(r),

where z := eβµ is the fugacity, and we are using the convention that Z0 = 1. Notice that Z1 = V/λ3
T , so

N/Z1 equals the degeneracy discriminant or classicality parameter δ := ρ λ3
T = N/Z1 for the gas. Our first

goal is to calculate the configuration integral in the expression for ZN (V, T ) above.

•Grand potential: From the general expression for Ω = E−TS−µN , and using ln(1+x) = x− 1
2 x

2+ 1
3 x

3−...,
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T
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2
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]
.

• Chemical potential: Many expressions obtained from Zg will contain z or µ. To replace that dependence

with one on N̄ , identified with the known, fixed N , we find the relationship between z and N̄ . Start from

N̄ = −∂Ω

∂µ
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= Z1z + 2 (Z2 − 1
2 Z

2
1 ) z2 + ...

Setting N̄ = N and solving this equation iteratively for z (this works because δ = N/Z1 = ρ λ3
T � 1) gives

z =
N

Z1

− 2 (Z2 − Z2
1/2)

Z1

(N
Z1

)2

+ ... , and therefore Ω = −k
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.

• Virial coefficients: Calculating p as −∂Ω/∂V |T,µ is made complicated in this case by the dependence of

Z1 and (especially) Z2 on V . However, using the fact that Ω = Ē − TS − µN = −pV , we find

p = −Ω

V
=
k
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]
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which means that the second virial coefficient (both in the classical and in the quantum theory) is given by

B = −(Z2 − 1
2 Z

2
1 )

V

Z2
1

.

Thus, for B(T ) one needs to take into account only the two-particle configuration integral, reflecting the
fact that as the density grows the first corrections to the pressure will come from small sets of particles that
are close enough to each other to feel the effects of φ(r). In order to calculate B(T ) in specific examples,
therefore, the main task will be to find Z2.
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