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The Free Fermion Gas and Electrons in Metals

• The system: Formally, we will treat a gas of N free fermions in thermal equilibrium at temperature T in a
box of volume V . Physically, however, this can be used as a model for the conducting electrons inside a metal
(for which the mutual interactions can often be neglected if we consider them as cancelled by the presence of
the nuclei); in this case, the energies below are all to be considered as just representing the kinetic energies
above the bottom of the conduction band.

• Goal: We want to study properties of the occupation number distribution N̄(εα) as a function of energy,
and use it to calculate the mean energy and heat capacity at low temperatures. If the gas is used to model
conduction electrons in a metal, this CV will be their contribution to the total value for the solid.

• Setup: For convenience, we will model the system using a grand canonical ensemble. Thus, in principle,
the total particle number is not fixed. However, in the thermodynamic limit N is very strongly peaked
around N̄ , so if we find N̄(β, µ) we can substitute the fixed N for N̄ in this expression and invert it to find
µ(β,N), which can then be used to calculate other thermodynamic quantities.

• Density of states: If we assume that f and the one-particle energies ε(k) depend only on the magnitude k
of k, and not on γ, the calculation of the density of states for free electrons proceeds in the same way as for
massive bosons and we find, using gs = 2 for the number of spin states of an electron,

g(ε) = gs
4πV

(2π)3
k2

dk

dε
=
gsV

4π2

(
2m

h̄2

)3/2√
ε .

• Occupation-number distribution: The mean number of particles in a single-particle state of energy ε for
fermions is given by the Fermi function, derived earlier,

N̄(ε) = F (ε) =
1

e(ε−µ)β + 1
=

1

z−1eβε + 1
.

Notice that at any (non-zero) temperature, the value of the Fermi function at ε = µ is F (µ) = 1
2 ; in the

T →∞ limit, instead, F (ε) approximates the Maxwell-Boltzmann distribution.

Using g(ε) and N̄(ε) we can now write down, as the starting point for thermodynamical calculations,

N̄ =
∑
α

N̄α ≈
∫ ∞
0

dε g(ε) N̄(ε) , Ē =
∑
α

N̄αεα ≈
∫ ∞
0

dε g(ε) N̄(ε) ε .

Zero-Temperature Quantities

• Occupation-number distribution: At T = 0 the mean number of particles above in the single-particle state
α becomes a step function whose value equals 1 for εα < µ, and 0 for εα > µ (and by continuity we still set
N̄(µ) = 1

2 ). Thus, µ0 = µ(0) cannot be zero and we wish to find its value. Notice that, contrary to what
happens in the case of bosons, in this case 0 ≤ N̄α ≤ 1 for any β and z, so the value of z is now unrestricted.

• Fermi energy and temperature: At T = 0 we can calculate exactly the sum for the mean number of particles
as a function of µ0; setting then N̄ = N gives an explicit expression for µ0 in terms of N . For electrons,
since up to ε = µ0 each state is occupied by exactly one electron,

N̄ =

∫ µ0

0

dε g(ε) =
2

3

V m3/2µ
3/2
0√

2π2h̄3
, or µ0 =

(
3π2 N

V

)2/3 h̄2

2m
=: εF (the Fermi energy) .

From N̄(ε) we see that at T > TF = εF/kB
thermal fluctuations start populating energy levels above εF = µ0.

• Mean energy: Using the Fermi energy, a similar calculation for the mean energy gives now

Ē =

∫ µ0

0

dε ε g(ε) =
3

5
µ0N , or ε̄ =

3

5
εF .
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Small-Temperature Quantities

• Useful integrals: When evaluating the finite-temperature corrections for quantities such as N̄ and Ē, we
will need to calculate integrals of the following form, for some function K(ε):

I(µ, T ) =

∫ ∞
0

dεK(ε) N̄(ε) =

∫ ∞
0

dε
K(ε)

e(ε−µ)β + 1
.

For low temperatures T � TF = εF/kB
we can evaluate I(µ, T ) as a power series expansion around T = 0,

where I(µ, 0) =
∫ µ
0

dεK(ε). To proceed, introduce a new variable x := β(µ− ε) ∈ (−∞, βµ) and write

I(µ, T ) = −k
B
T

[ ∫ 0

βµ

dx
K(µ− k

B
T x)

e−x + 1
+

∫ −∞
0

dx
K(µ− k

B
T x)

e−x + 1

]
=

∫ µ

0

dεK(ε)− k
B
T

∫ βµ

0

dx
K(µ− k

B
T x)

ex + 1
+ k

B
T

∫ ∞
0

dx
K(µ+ k

B
T x)

ex + 1
,

where we have separated the parts with x > 0 and x < 0, used the identity 1/(e−x + 1) = 1 − 1/(ex + 1)
in the first term and replaced x 7→ −x in the second one, and restored ε in the first resulting integral. The
second integral can be extended to +∞ with an excellent approximation as T → 0. The second and third
integral then become similar, and expanding terms in powers of T we get

I(µ, T ) =

∫ µ0

0

dεK(ε) + (µ− µ0)K(µ0) +O(µ− µ0)2 +

+ 2K ′(µ0) (k
B
T )2

∫ ∞
0

xdx

ex + 1
+

2

3!
K ′′′(µ0) (k

B
T )4

∫ ∞
0

x3 dx

ex + 1
+ ... .

• Finite-temperature corrections: The leading-order correction to each quantity such as µ and Ē for T > 0
can be obtained from the first term after the T = 0 one in the low-temperature expansion of the corresponding
I(µ, T ). The expressions to use for N̄ and Ē are I(µ, T ) with K(ε) = g(ε) and ε g(ε), respectively, or

N̄ =

∫ ∞
0

dε
g(ε)

e(ε−µ)β + 1
, Ē =

∫ ∞
0

dε
ε g(ε)

e(ε−µ)β + 1
.

Thermodynamics

• Chemical potential: We expand N̄(T, µ) and equate the expression to N to find µ.

• Heat capacity: The mean energy is given by I(µ, T ) with K(ε) = ε g(ε), or

Ē =

∫ ∞
0

dε
ε g(ε)

e(ε−µ)β + 1
= Ē(0) + (k

B
T )2 g(µ0)

π2

12
,

from which

CV,N =
π2

6
k2

B
T g(µ0) .

• Remark: From the principle of equipartition we might have expected a constant CV,N . But, since in general

CV,N = T
∂S

∂T

∣∣∣
V,N

,

this would have implied a S → −∞ at low T , which is inconsistent with the third law of thermodynamics.

• Pressure equation of state: [See the lecture notes on the effects of quantum statistics. It leads to a fermion
degeneracy pressure which has applications, e.g., to the structure of white dwarf stars and neutron stars.]

Reading

• Course textbook: Kennett, Ch 8, Sections 8.1-8.2.
• Other books: Chandler, §4.5; Halley, end of Ch 5; Huang, Ch 16; Mattis & Swendsen, Ch 6 (first half);
Pathria & Beale, Ch 8, in particular §8.1; Plischke & Bergersen, §§12.2.4–12.2.5; Reif, §9.16; Schwabl, §4.3.


