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The Free Fermion Gas and Electrons in Metals

e The system: Formally, we will treat a gas of IV free fermions in thermal equilibrium at temperature 7" in a
box of volume V. Physically, however, this can be used as a model for the conducting electrons inside a metal
(for which the mutual interactions can often be neglected if we consider them as cancelled by the presence of
the nuclei); in this case, the energies below are all to be considered as just representing the kinetic energies
above the bottom of the conduction band.

e Goal: We want to study properties of the occupation number distribution N(e,) as a function of energy,
and use it to calculate the mean energy and heat capacity at low temperatures. If the gas is used to model
conduction electrons in a metal, this C'}, will be their contribution to the total value for the solid.

e Setup: For convenience, we will model the system using a grand canonical ensemble. Thus, in principle,
the total particle number is not fixed. However, in the thermodynamic limit IV is very strongly peaked
around N, so if we find N (8, 1) we can substitute the fixed N for N in this expression and invert it to find
w(B, N), which can then be used to calculate other thermodynamic quantities.

e Density of states: If we assume that f and the one-particle energies (k) depend only on the magnitude k
of k, and not on =, the calculation of the density of states for free electrons proceeds in the same way as for
massive bosons and we find, using g, = 2 for the number of spin states of an electron,
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e Occupation-number distribution: The mean number of particles in a single-particle state of energy e for

fermions is given by the Fermi function, derived earlier,
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Notice that at any (non-zero) temperature, the value of the Fermi function at € = p is F(u) = 1; in the

T — oo limit, instead, F'(¢) approximates the Maxwell-Boltzmann distribution.

Using g(e) and N(€) we can now write down, as the starting point for thermodynamical calculations,
N:Z]\_fa%/ deg(e) N(e) , EzZNaea%/ deg(e) N(e)e.

Zero-Temperature Quantities

e Occupation-number distribution: At T'= 0 the mean number of particles above in the single-particle state
a becomes a step function whose value equals 1 for €, < p, and 0 for €, > p (and by continuity we still set
N(p) = %) Thus, 1y = (1(0) cannot be zero and we wish to find its value. Notice that, contrary to what
happens in the case of bosons, in this case 0 < N, <1 for any § and z, so the value of z is now unrestricted.

e Fermi energy and temperature: At T' = 0 we can calculate exactly the sum for the mean number of particles
as a function of p,; setting then N = N gives an explicit expression for y, in terms of V. For electrons,
since up to € = p, each state is occupied by exactly one electron,
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N = /0 deg(e) = 3 % , or o = (372 V) o = €F (the Fermi energy) .
From N () we see that at T > Ty = € /k,, thermal fluctuations start populating energy levels above e = .

e Mean energy: Using the Fermi energy, a similar calculation for the mean energy gives now
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Small-Temperature Quantities

o Useful integrals: When evaluating the finite-temperature corrections for quantities such as N and E, we
will need to calculate integrals of the following form, for some function K(e):
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For low temperatures T < Tp = €p/k, we can evaluate I(u,T) as a power series expansion around 7' = 0,

where I(p,0) = [ de K(¢). To proceed, introduce a new variable x := 3(u — €) € (—o00, Su) and write
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where we have separated the parts with # > 0 and x < 0, used the identity 1/(e™* +1) =1 —1/(e” + 1)
in the first term and replaced x — —z in the second one, and restored € in the first resulting integral. The
second integral can be extended to +o0o with an excellent approximation as T' — 0. The second and third
integral then become similar, and expanding terms in powers of T' we get
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e Finite-temperature corrections: The leading-order correction to each quantity such as p and E for T > 0
can be obtained from the first term after the 7" = 0 one in the low-temperature expansion of the corresponding
I(u,T). The expressions to use for N and E are I(u,T) with K(e) = g(e) and € g(¢), respectively, or
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Thermodynamics
e Chemical potential: We expand N (T, u) and equate the expression to N to find p.
e Heat capacity: The mean energy is given by I(u,T) with K(e) = eg(e), or
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e Remark: From the principle of equipartition we might have expected a constant CY, . But, since in general
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this would have implied a S — —oo at low T, which is inconsistent with the third law of thermodynamics.

e Pressure equation of state: [See the lecture notes on the effects of quantum statistics. It leads to a fermion
degeneracy pressure which has applications, e.g., to the structure of white dwarf stars and neutron stars.]

Reading

e Course textbook: Kennett, Ch 8, Sections 8.1-8.2.
e Other books: Chandler, §4.5; Halley, end of Ch 5; Huang, Ch 16; Mattis & Swendsen, Ch 6 (first half);
Pathria & Beale, Ch 8, in particular §8.1; Plischke & Bergersen, §§12.2.4-12.2.5; Reif, §9.16; Schwabl, §4.3.



