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The Phonon Gas

• The system: A solid with N atoms occupying a volume V , in thermal equilibrium at temperature T . The
atoms are kept in place by their mutual interactions, represented by a potential energy U(r1, ..., rN ) with
a minimum at equilibrium positions r0

1, ..., r
0
N forming a lattice. At any T > 0, the positions of the atoms

are subject to fluctuations which propagate as waves throughout the solid. The Fourier components of these
(discrete) waves can be considered as pseudoparticles called phonons. A gas of phonons differs from a gas
of photons in that: (i) Since there are a total of 3N degrees of freedom, there are only finitely many modes,
and (ii) There are both transverse and longitudinal modes, in general propagating at different speeds.

• Hamiltonian: If the atoms are close to their equilibrium positions, the Hamiltonian can be written as

H =

N∑
i=1

p2
i

2m
+ U(r1, ..., rN ) =

3N∑
I=1

p2
I

2m
+ U0 + 1

2

3N∑
I,J=1

∆rI KIJ ∆rJ + h.o.t. ,

where ∆rI := rI−r0
I (I = 1, ..., 3N), U0 = U(r0

1, ..., r
0
N ), KIJ := ∂2U/∂rI∂rJ |r= r0 , and at low temperatures

we can just keep those terms in the Taylor series expansion of U . If we diagonalize the symmetric matrix
KIJ and call qI its eigenvectors, each of which identifies one of the normal modes of the system, then
K qI = κIqI and we can write H in the decoupled form

H =

3N∑
I=1

p2
I

2m
+ U0 + 1

2

3N∑
I=1

κIq
2
I = U0 +

3N∑
I=1

(
p2
I

2m
+ 1

2 κIq
2
I

)
.

• Quantum states: For small deviations from equilibrium, every normal mode contributes a degree of freedom
that behaves like a simple harmonic oscillator with frequency ωI =

√
κI/m, so the eigenvalue of the total

Hamiltonian operator corresponding to the state |α〉 = |n1, ..., n3N 〉 is

Eα = E0 +

3N∑
I=1

nI h̄ωI , where E0 = U0 + 1
2

3N∑
I=1

h̄ωI and ωI :=
√
κI/m.

A convenient labeling of states is to specify their wave vector and polarization (one longitudinal or acoustic
mode, governed by the bulk modulus, and two transverse modes, governed by the shear modulus), I = (k, γ).

• Goal: Treating this system from the point of view of thermodynamics, we would like to obtain the
energy equation of state, and the contribution to the specific heat of the solid from lattice excitations—
to be added to that of the electron gas (if any) and the one from the internal degrees of freedom of the
atoms. Experimentally, the value found at high temperatures is CV = 3Nk

B
for all solids (Dulong-Petit

law—universality), but for low T it goes to zero as CV ∝ T 3 (Debye’s law), consistently with the third law.

Canonical Ensemble

• Partition function: As for all bosons, and similarly to what we saw for the gas of photons, we find that
after summing over values of the occupation numbers nk,γ the partition function becomes

Z = e−βE0

∏
k,γ

1

1− e−βεk,γ
,

where the wave vector k and polarization γ label the single-particle states, with energies εk,γ = h̄ωk,γ .

• Density of States: In this case we don’t know the form of ωk,γ , but in general we can say that g(ω) can
also be directly defined as a sum over the 3N values of (k, γ), g(ω) =

∑
k,γ δ(ω − ωk,γ). The main difficulty

in the calculation of the lattice heat capacity for a solid lies in writing down the right g(ω). One often uses
approximations, like the two we will see next.

• Free energy: From the partition function above,

βF = − lnZ = βE0 +
∑
k,γ

ln(1− e−βh̄ωk,γ ) = βE0 +

∫ ∞
0

dω g(ω) ln(1− e−βh̄ω) .
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The Einstein Model

• Idea: A model for a solid in which all atoms are considered to be harmonic oscillators with the same
frequency ω0, so only one “phonon” energy level ε0 = h̄ω0 is occupied. This may be expected to be a
reasonable approximation at low temperatures, where we can assume that all oscillators are in their ground
state and have the same frequency. The density of states becomes of the form g(ω) = 3N δ(ω − ω0).

• Specific heat: In this model, βF = βE0 + 3N ln(1− e−βh̄ω0) and

Ē =
∂(βF )

∂β
= E0 + 3N

h̄ω0

eβh̄ω0 − 1
, CV = −k

B
β2 ∂Ē

∂β
= 3N k

B
β2 (h̄ω0)2 eβh̄ω0

(eβh̄ω0 − 1)2
,

which at high temperatures satisfies the principle of equipartition (Ē = 3Nk
B
T ) and the Dulong-Petit law

(CV = 3Nk
B
). It also vanishes as T → 0, which was very significant historically, but it does so exponentially

and not at the observed rate, because it does not properly take into account the dispersion relation ω(k).

The Debye Theory

• Idea: Assume that for all wave vectors and all polarizations the phase velocity c = ω/k is the same, or

ωk,γ = ck, independent of k̂ and γ (this relationship holds up to the maximum value of k, which is of the
order of the inverse lattice spacing). This amounts to treating the solid as if it was an elastic medium or
fluid, rather than a collection of discrete particles, except for the existence of a maximum k, which is a good
approximation for long wavelengths and gives better results than the Einstein model at low temperatures.

• Density of states: If ω = ck, where c is a constant speed of sound (the same dispersion relation as for
photons, but different c), we get that dω/dk = c and, for a general f(ω) and using the fact that here ν = 3,∑

k,γ

f(ωk,γ) ≈ 3V

(2π)3

∫ ωD

0

4π ω2dω

c3
f(ω) , or g(ω) =

3V

2π2 c3
ω2 ,

where the Debye frequency ωD corresponds to the maximum value of k. Using the fact that the total number
of degrees of freedom is

∑
k,γ 1 = 3N , we find ωD = c (6π2N/V )1/3, typically an infrared frequency.

• Free energy: Then, from the general expression for the lattice free energy derived above,

βF = βE0 +

∫ ∞
0

dω g(ω) ln(1− e−βh̄ω) = βE0 +
3V

2π2 c3

∫ ωD

0

dω ω2 ln(1− e−βh̄ω) .

(Recall that for massless bosons the mean number of particles in mode k was N̄k = 1/(eβh̄ω − 1).)

• Heat capacity: The general expression for the mean energy in the Debye theory is

Ē =
∂(βF )

∂β
= E0 +

∫ ∞
0

dω g(ω)
h̄ω

eβh̄ω − 1
= E0 +

3V

2π2 c3

∫ ωD

0

dω
h̄ω3

eβh̄ω − 1
.

Since we don’t know how to evaluate this expression exactly, we will consider just the small-T and large-T
approximations. More precisely, if we introduce θD := h̄ωD/kB

, and the dimensionless x := βh̄ω, then

CV =
∂Ē

∂T
= k

B

3V

2π2(cβh̄)3

∫ βh̄ωD

0

x4 ex

(ex − 1)2
dx .

(Some θD values used are: 428 K for Al, 470 K for Fe, 170 K for Au and 645 K for Si.) Limiting behavior:
T → 0: For T � θD the range of integration can be extended to infinity and we get CV ∝ T 3 (Debye’s law).
T →∞: For T � θD, to leading order

1

eβh̄ω − 1
≈ k

B
T

h̄ω
,

so we get that Ē = E0 + 3Nk
B
T , and we recover CV ≈ 3Nk

B
(the Dulong-Petit law).

Reading

• Course textbook: Kennett, § 4.7.2 (Einstein model) and § 9.4.
• Other books: Plischke & Bergersen, —; Chandler, § 4.3; Mattis & Swendsen, § 5.6;
Pathria & Beale, §§ 7.4 and 7.5; Reif, §§ 10.1–10.2; Schwabl, § 4.6.


