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The Photon Gas

General Considerations

• Goal: Consider the quantized electromagnetic field in a box of volume V , in thermal equilibrium at
temperature T . As a thermodynamical system we have a gas of photons, but the number N is not fixed;
photons can be absorbed and emitted by the walls. Notice that in a real system this equilibrium description
is often not a very good approximation because there are no photon-photon interactions (for our purposes),
and the photon interactions with matter (the walls) play a central role in establishing equilibrium, but they
are strongly dependent on the material photons interact with. We would like to calculate Ē and the energy
density u = Ē/V , the p and S equations of state, and the black-body spectrum (Planck’s radiation law).

• States: Photons are spin-1 massless particles whose 1-particle quantum states are specified by the pair
α = (k, γ). In a box of volume V = L1L2L3 with periodic boundary conditions, the allowed values for the
wave vector components are ki = 2πni/Li, ni ∈ Z for i = 1, 2, 3, while the polarization has two values we
can label γ = ±1. We will use the Fock representation and label general states in the total Hilbert space by
the occupation numbers for each (k, γ), |Nk1,γ1

, Nk2,γ2
, ..., Nkj ,γj

, ...〉, where each Nkj ,γj
= 0, 1, 2, ...

• Hamiltonian: Photons are, to an excellent approximation, non-interacting particles. The single-particle
mode (k, γ) has energy εα = εk = h̄ω with ω = ck, so the Hamiltonian operator can be written as

Ĥ =
∑
k,γ

h̄ω N̂k,γ =
∑
k,γ

h̄ω â†k,γ âk,γ ,

where N̂α = â†α âα is the number operator for the mode α, and â†α and âα the creation and annihilation
operators for a photon in that mode, respectively. This is like the Hamiltonian for an infinite set of oscillators.

• Partition function: Summing over all Fock states, the canonical partition function becomes

Z = tr e−βĤ =
∑
{Nk,γ}

e−βΣk,γ h̄ωNk,γ =
∏
k,γ

∑
Nk,γ

e−βh̄ωNk,γ =
∏
k,γ

1

1− e−βh̄ω
.

Although N is not fixed we have not used the grand canonical ensemble, but we would obtain the same
results using Zg with µ = 0. Notice that for a photon γ has gs = 2 values (the two polarizations), and since
ω does not depend on γ the product over its values simply gives the square of the argument of the product.

Thermodynamics

• Density of states: The calculation is similar to the one for massive bosons, but now the single-particle
energy is ε = ch̄k so k = ω/c. If f(ε) is any slowly-varying function of the energy, then∑
α

f(εα) ≈
∑
γ

∫
IR3

d3n f(ε(n)) =
gsV

8π3

∫
IR3

d3k f(ε(k)) =
gsV

2π2

∫ ∞
0

dk k2 f(ω(k)) =
gsV

2π2c3

∫ ∞
0

dω ω2 f(ω) .

Equating this to
∫∞

0
dω g(ω)f(ω) and setting gs = 2 we can read off g(ω) = (V/π2c3)ω2. . g(ε) ∝ ε2.

• Free energy: If we start with the general expression for F in terms of the partition function, F = −k
B
T lnZ,

use the density of states, define x := βh̄ω, and integrate by parts in one step, we get

F = k
B
T
∑

k,γ
ln(1− e−βh̄ω) ≈ k

B
T

∫ ∞
0

dω g(ω) ln(1− e−βh̄ω) =
V (k

B
T )4

π2(h̄c)3

∫ ∞
0

dxx2 ln(1− e−x)

=
V (k

B
T )4

π2(h̄c)3

(
− 1

3

∫ ∞
0

dxx3

ex − 1

)
= −V (k

B
T )4

π2(h̄c)3
(2 ζ(4)) = −V (k

B
T )4

π2(h̄c)3

π4

45
= −4σ

3c
V T 4 ,

where σ := π2k4
B
/60h̄3c2 is the Stefan-Boltzmann constant and the Riemann zeta function is

ζ(x) =
1

Γ(x)

∫ ∞
0

du
ux−1

eu − 1
=

∞∑
n=1

1

nx
, with ζ(4) =

π4

90
.
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• Entropy: From the general expression as a derivative of the Helmholtz free energy,

S = −∂F
∂T

∣∣∣
V

=
16σ

3 c
V T 3 .

• Energy and specific heat: Inverting the expression for F in terms of Ē we get the Stefan-Boltzmann law,

Ē = F + TS =
4σ

c
V T 4 , or u =

4σ

c
T 4 ,

which leads to a heat capacity that vanishes like T 3 as T → 0,

CV = T
∂S

∂T

∣∣∣
V

or
∂Ē

∂T

∣∣∣
V

=
16σ

c
V T 3 .

• Pressure equation of state: From the general expression,

p = −∂F
∂V

∣∣∣
T

=
4σ

3 c
T 4 , so Ē = 3 pV , or u = 3 p .

Photon Spectrum (“Black bodies are not black”)

• Idea: From the general expression for the mean occupation number of each energy state for bosons, and
the density of states for massless free particles in terms of energy or angular frequency ω, we want to obtain
the mean energy density u(ω) dω of radiation at temperature T in a frequency interval dω.

• Planck spectrum: Recall that the mean occupation number of a single-particle state labelled by α↔ (k, γ)
for a boson gas (using µ = 0) and the density of states for particles of energy ε = cp = ch̄k and two
polarization states inside a volume V are, in terms of the angular frequency ω,

N̄ω,γ =
1

eβh̄ω − 1
, g(ω) =

V ω2

π2c3
.

Then the number of photons occupying states in an interval dω around ω inside a volume V is

dN̄ω = N̄ω,γ g(ω) dω =
V

π2c3
ω2 dω

eβh̄ω − 1
.

Planck’s law gives the amount of energy in photons in an energy interval dω, and it is then given by

u(ω) dω = h̄ω
dN̄ω
V

=
h̄

π2c3
ω3 dω

eβh̄ω − 1
.

• Laws of black-body radiation: The energy density u(ω) peaks at a maximum frequency ωmax which scales
with temperature [plot]. If we use the dimensionless variable x := βh̄ω in u(ω), we can write

u(ω) dω =
h̄

π2c3

(
k

B
T

h̄

)4
x3 dx

ex − 1
.

This means that (i) as T varies, the peak of this curve always occurs at the same value of x, so that ωmax/T is
a constant, and ωmax ∝ T (Wien’s displacement law), and (ii) the energy in each interval dx is proportional
to T 4, consistently with the result above for the integrated energy density u (Stefan-Boltzmann law).

• Mean number of photons: Integrating the expression above for the mean number of photons in each
frequency interval, we get for the mean total number

N̄ =
V

π2c3

∫ ∞
0

ω2 dω

eβh̄ω − 1
=

2V ζ(3)

π2c3(βh̄)3
∝ V T 3 ,

where ζ(3) ≈ 1.20205.

Reading

• Course textbook: Kennett, § 9.1.
• Other books: Chandler, § 4.2; Mattis & Swendsen, § 5.5; Pathria & Beale, § 7.3;
Plischke & Bergersen [Problem 2.7]; Reif, §§ 9.13–9.15; Schwabl, § 4.5.


