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Quantum Statistics of Identical Particles

• Introduction: We have already seen the important consequences that the indistinguishability of identical
particles has for the entropy of a system. In quantum theory, however, Boltzmann’s procedure of simply
including an N ! factor in the counting of states needs to be changed, because (i) It does not lead to correct
results when particle states are discrete, and (ii) There are two different types of particles, as regards their
statistics. We now set up the formalism needed to discuss this point, and its effect on thermodynamics.

Quantum States for Identical Particles

• Particle permutations: One way to write down anN -particle state is to specify a complete set of variables for
each particle, for example ψ(r1, ..., rN ). If we permute the labels of the particles, {1, ..., N} 7→ P{1, ..., N} =
{P1, ..., PN}, the state must be physically indistinguishable, so |ψ(rP1, ..., rPN )| = |ψ(r1, ..., rN )|. If the
permutation consists in exchanging just two particles we get only two possibilities, ψ(..., rPi, ..., rPj , ...) =
±ψ(..., ri, ..., rj , ...), which implies that more generally, if [P ] is the parity of P ,

ψ(rP1, ..., rPN ) = (±1)[P ] ψ(r1, ..., rN ) .

• Fermions and Bosons: It is experimentally seen, and can be shown, that particles whose spin is an integer
multiple of h̄ satisfy this equation with the upper (+) sign. They are said to satisfy Bose-Einstein statistics
and called bosons; examples are photons, gluons, the W and Z mesons, the Higgs boson, and all integer-spin
composite particles. Particles whose spin is a half-integer multiple of h̄ satisfy the equation with the lower
(–) sign. They are said to satisfy Fermi-Dirac statistics and called fermions; examples are the electron, muon,
neutrino, all quarks, the proton and neutron, etc. One immediate consequence of the antisymmetry of ψ for
fermions is that no two of them can occupy the same state; for example, ψ(..., r, ..., r, ...) = 0 for any r.

• N -particle basis: Given a choice of 1-particle basis of states φα(r) = 〈r|α〉, we can define a complete set of
states for N identical bosons or fermions, respectively. Each N -particle state corresponds to an unordered
set of labels {α} = {α1, ..., αN} and, to ensure that it satisfies the appropriate property under permutations,
it is obtained as a sum over all P ∈ PN , the set of permutations of the first N integers, If all αi are different,

φ{α}(r1, ..., rN ) =
1√
N !

∑
P∈PN

(±1)[P ] φα1
(rP1) · · · φαN (rPN ) .

• Plane-wave basis: Let us assume for now that the particles are structureless, so the state label α is just
the particle’s wave number k. Then, for a particle of mass m in a rectangular box of volume V = L1L2L3, a
convenient basis is often the one in which single-particle states are plane waves φk(r) = 〈r|k〉 = V −1/2 eik·r.
If we choose periodic boundary conditions at the walls (easier to handle than other ones, and physically
reasonable for L� λ), then the allowed values of k are given by ki = (2π/Li)ni, for ni ∈ Z, and

φ{k}(r1, ..., rN ) =
1√

N !V N

∑
P∈PN

(±1)[P ] eik1·rP1 · · · eikN ·rPN .

Quantum Canonical State

• One particle: For a free particle of mass m the Hamiltonian is Ĥ = p̂2/2m, where p = h̄k and k labels
the single-particle states φk(r). The partition function for an equilibrium state at temperature T is

Z1 = tr e−βĤ =
∑
k

〈k|e−βĤ |k〉 =

3∏
i=1

+∞∑
ni=−∞

exp{−(βh2/2mL2
i )n

2
i } .

If the exponential varies slowly with ni (e.g., for T →∞) the sum over ni can be replaced by an integral.

• More particles: For N > 1 particles, we could formally write ZN = tr e−βĤ =
∑
{k}〈{k}|e−βĤ |{k}〉, but

the sum over discrete values of {k} is made difficult to handle by the fact that we have to keep track of how
many of the ks are different in each term, and we need to come up with a more convenient approach.
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Fock Space Representation

• Idea: Another way to write down an N -particle state, without having to deal with sums over permutations,
is to specify the number Nαi of particles in each single-particle state αi, and use as basis the vectors

|Nα1
, Nα2

, ..., Nαi , ...〉 ,
for all sets of non-negative integers {Nα1

, Nα2
, ..., Nαi , ...}; this is called a Fock basis for the Hilbert space.

• Conditions on the states: If the system has a total of N particles, and if it has a total energy E, then the
set of numbers {Nα} has to satisfy the conditions∑

αNα = N ,
∑
αNαεα = E .

Quantum Grand Canonical State for Identical Particles

• Idea: One of the examples of systems we will see soon is that of a gas of photons, in which the temperature
will be assumed known but the number of particles varies; this situation is well described by a grand canonical
density matrix and it will be very convenient to use the Fock basis for the Hilbert space. But even for gases
with a fixed number N of massive particles the calculation of Z becomes much simpler if we (i) use a Fock
basis for the Hilbert space—which eliminates the need for summing over permutations—and (ii) allow the
number of particles to range from 0 to ∞—which provides us with simple closed-form expressions for many
sums over states. We therefore find it convenient to work with a grand canonical state and simply require
that µ be adjusted so that the total mean number N̄ of particles coincide with the known N .

• Grand canonical partition function: Using a Fock basis one can get that, for non-interacting particles,

Zg = tr e−βĤ+βµN̂ =
∑
{Nα}

eΣαNα(µ−εα) β =
∏
α

{
[1− e(µ−εα)β ]−1 (bosons)
1 + e(µ−εα)β (fermions) ,

where we used E =
∑
αNαεα and N =

∑
αNα, and the single-particle energies are given by εα = h̄2k2

α/2m
for massive particles (electrons, neutrinos, ...) and εα = h̄ωα for massless particles (photons). For bosons,
we must have eβµ > 0. Notice that to use these results we need to be able to find the value of µ.

• Number of particles: Using the grand canonical partition function we can derive, for example, the mean
total number of particles N̄ and the mean occupation number N̄α for each state α. We start from the general
expression for the grand potential Ω = Ē − TS − µN in terms of the partition function,

Ω = −k
B
T lnZg = ± k

B
T
∑

α
ln[1∓ e(µ−εα)β ] .

Then the mean total number of particles, from the general expression in terms of Ω, is

N̄ = −∂Ω

∂µ

∣∣∣
T,V

=
∑

α

1

e(εα−µ)β ∓ 1
=
∑

α
N̄α , where N̄α =

1

e(εα−µ)β ∓ 1
.

In practice, we will often view this result as a relationship between N̄ and µ, for a given β, and use it to find
µ in terms of N̄ . For fermions this last expression, as a function of the energy, is called the Fermi function,

F (ε) =
1

eβ(ε−µ) + 1
.

[Notice that from that expression we also get that for all α, ln(N̄α ± 1)− ln N̄α = β (εα − µ).]

• Other quantities: We can now go on to derive thermodynamical quantities, such as the mean energy,
entropy S = −∂Ω/∂T |V,µ, heat capacity, etc, and the quantum corrections to the equation of state; we can

also derive a fluctuation-response relation (∆Nα)2 = k
B
T ∂N̄α/∂µ|T,V . One hard part of these calculations

will be evaluating the sums over modes α. However, if we can justify replacing sums by integrals over wave
vectors k and the latter by ones over energies ε, and obtain an expression for the density of states g(ε), then
those sums will be reduced to expressions of the type

N̄ =

∫ ∞
0

dε N̄(ε) g(ε) , Ē =

∫ ∞
0

dε ε N̄(ε) g(ε) .

Reading

• Main textbooks: Kennett, Chapter 7; Pathria & Beale, Chapters 5 and 6.
• Other books: Halley, Ch 5; Plischke & Bergersen, § 2.4; Reif, § 9.8; Schwabl, §§ 4.2–4.3.


