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Review of Thermodynamics. 5: Phase Equilibrium and Phase Transitions

Phases of Single-Component Systems

• Idea: Many single-component systems can exist in different physical forms or phases. For a substance
made of non-magnetic atoms, for example, the possible phases are solid, liquid, gas—but also plasma and
Bose-Einstein condensate at very high or low T , respectively. How can we characterize each phase ther-
modynamically? In a fluid, a formal definition can be obtained from the convergence properties of virial
expansions in ρ. Physically, we can consider each phase as a region of state space with a different type of
equation of state. In particular, for a liquid the compressibility κT = −(V ∂p/∂V )−1 is much smaller than
for a gas, since the isothermal lines in the p-V plane have a very large negative slope.

• Goal: For the time being we will focus on fluids, for which each phase is a different relationship among
(p, V, T ), and determine which regions of the p-V state space each phase occurs in, and those in which phases
can coexist. Our main example here will be the van der Waals gas; later we will consider the magnetization
phases for a ferromagnet, in which each phase is a different relationship among ( ~H, ~M, T ).

Conditions for Equilibrium

• Second law reminder: One consequence of the variational form of the second law is that, for a system
partitioned into two parts, the equilibrium state the system adopts without any internal constraints minimizes
the energy E = E(1) + E(2) with respect to all virtual variations in which each parts satisfies the first law.

• Temperature: Consider a system consisting of two subsystems 1 and 2 in thermal equilibrium, and impose
an internal constraint by which S1 7→ S1 + δS and S2 7→ S2− δS, but no work is done on the two parts. Now
the system is not in its unconstrained equilibrium state, so δE ≥ 0, with δE = δE1 + δE2 = (T1 − T2) δS,
so (T1 − T2) δS ≥ 0. But we can repeat the argument switching 1 and 2, so consistency requires T1 = T2.

• Pressure: Divide a system in equilibrium at T into two parts and impose an internal constraint that
changes their volumes, with V1 7→ V1 + δV and V2 7→ V2 − δV . Using a similar argument to the one for T ,
for all δV we must have δE = δE1 + δE2 = −(p1 − p2) δV + ... ≥ 0, so consistency requires that p1 = p2.

• Chemical potential: Divide a system in equilibrium at T into two parts and impose an internal constraint
that changes the number of particles in each part, with N1 7→ N1 + δN and N2 7→ N2− δN . Again, we must
have δE = δE1 + δE2 = (µ1 − µ2) δN + ... ≥ 0 for all δN , so for consistency µ1 = µ2. Notice that, since
G = µN , the equality of G at the values of (p, V ) corresponding to the phase transition implies µ1 = µ2.

Types of Phase Transitions

• Critical points: The liquid-gas phase transition for a van der Waals gas has a critical point, above which no
transition occurs. This is a common feature for liquid-gas transitions, where at high pressures/temperatures
the fluid varies smoothly from one phase to the other, but does not occur usually in solid-liquid phase
transitions, which involve the establishment of long-range correlations.

• First-order phase transitions: The ones that occur when there is a discontinuity in the first derivative
of a thermodynamic potential. For example, in the van der Waals case and in other liquid-gas transitions
the volume per particle is discontinuous, so the phase transition is first-order. These transitions involve the
release or absorption of latent heat and may not happen all at once–the two phases can coexist.

• Second-order phase transitions: The ones that occur when the lowest derivative of a thermodynamic
potential that has a discontinuity is the second one. For example, a discontinuity in the compressibility κT ,
but not in the volume V , would signal a second-order phase transition. An important example is that of
ferromagnetic materials. The susceptibility for a paramagnetic or ferromagnetic material is defined as

χ(T,B) =
∂M̄

∂B
= Nµ

∂〈s〉
∂B

.

In a ferromagnet, as one finds out from the mean-field approximation and Monte Carlo simulations (based on
the Ising model, for example), there is a second-order transition at which χ is discontinuous (in the infinite-
size or thermodynamic limit), between an unmagnetized phase and a magnetized one with long-range order.
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Phase Boundary / Coexistence

• Setup: Suppose that a one-component fluid has two phases that can coexist at some (T, p). Then those
values are on the boundary p = p0(T ) between two regions in the T -p plane in which the system has two
different equations of state of the form µ = µ1(T, p) and µ = µ2(T, p). On the boundary, however, because
the two phases coexist in equilibrium there, we have µ1(T, p0(T )) = µ2(T, p0(T )). Using this condition, we
want to find an equation that determines that line in terms of measurable quantities for the fluid.

• Clausius-Clapeyron equation: To obtain an equation for the separating line p0(T ), consider the equilibrium
condition µ1(T, p0(T )) = µ2(T, p0(T )), and take the T derivative of both sides. We get
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which, using dG = −S dT + V dp+ µdN with G = µ(T, p)N , so s = −∂µ/∂T |p and v = ∂µ/∂p|T , becomes

dp0
dT

=
∆s

∆v
=
Qlatent

T∆V
, the Clausius-Clapeyron equation .

Notice that it allows us to find ∆S just from measurements of V , p and T .

• Remark: For a second-order phase transition with ∆V = 0, one uses the Ehrenfest equations instead.

Phase Transitions

• Setup: We saw how to find the phase coexistence line in the p-T plane, by integrating the Clausius-
Clapeyron equation dp0(T )/dT = ∆s/∆v. Now we look at phase transitions in more detail, and in particular
see if using the equation of state in the form p = p(V, T ) we can predict under what conditions transitions
will occur. (Notice that phase transitions are very far from the behavior of ideal gases, so we cannot assume
that the fluid is close to an ideal gas and use, for example, a virial expansion of the equation of state.)

• Liquid-gas phenomenology: If we follow the behavior of a fluid along an isothermal line in the p-V plane,
the discontinuity in V at the phase transition is more obvious, and we can also clearly see the difference with
respect to an ideal gas. Consider the isothermal lines of the van der Waals gas in the p-V plane, considered
here as representative of a real gas situation. If we imagine starting in the liquid phase at T < Tc, and
lowering p by increasing V isothermally, when p reaches the value p0(T ), some of the fluid starts becoming
gas and increases its volume, without lowering p further until all of it is gas. How can we determine which
of the phases allowed by the equation of state a fluid will actually be in, at given T and p? How can we find
the values of p0(T ) and ∆V in terms of the p(V, T ) equation of state?

• The Maxwell construction: Start from the fact that

dG = −S dT + V dp+
∑

i
µi dNi ,

with G minimized in stable equilibrium, and phase coexistence occurs when the chemical potentials coincide,
with G = µN . Then one can find the pressure p0(T ) at which the transition happens and VA, VB from

∆G =

∫ B

A

V (p, T ) dp = 0 .

The volume change ∆V and pressure p0 are then also related by p0(T ) ∆V =
∫ B

A
p(V, T ) dV .

Reading

• Kennett: There is no specific chapter on phase transitions in thermodynamics.

• Other books: Chandler, Sec 2.3 (37-44); Halley, first half of Ch 9 (pp 161–172);
Mattis & Swendsen, Secs 3.6–3.8; Plischke & Bergersen, Secs 1.8 and 4.4 [for the Maxwell construction];
Pathria & Beale, Secs 12.1 and 12.2; Reichl, Ch 4; Reif, Secs 8.5–8.10; Schwabl, Secs 3.8–3.9.


