SUMMARY

In this chapter we defined the terms needed to describe quantitatively the motion of point objects (or objects that can be treated as point objects) in one dimension (see also Table 2-1).

Definitions

- Instant $t \equiv$ a single clock reading
(a single point on a time line or axis)
- Time interval $\Delta t \equiv t_{2}-t_{1}$
(distance between two points on a time line or axis)

In one dimension

- Position (x or y) is a coordinate along an arbitrarily placed real number line with successive integers (in SI) 1 m apart.
- Displacement

$$
\begin{equation*}
\Delta x \equiv x_{2}-x_{1} \tag{2-1}
\end{equation*}
$$

- Distance

$$
\begin{equation*}
|\Delta x| \equiv\left|x_{2}-x_{1}\right| \tag{2-2}
\end{equation*}
$$

for path segments where there is no reversal of travel direction. Distances are always positive.

- Average* velocity

$$
\begin{equation*}
\equiv \bar{v} \equiv \frac{\text { displacement }}{\text { tine interval }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \tag{2-3}
\end{equation*}
$$

- Average* speed

$$
\begin{equation*}
\equiv \frac{\text { total distance traveled }}{\text { total tine interval }} \tag{2-4}
\end{equation*}
$$

- Instantaneous velocity

$$
\begin{equation*}
v \equiv \operatorname{limit}_{\Delta t \rightarrow 0} \bar{v} \equiv \operatorname{limit}_{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \tag{2-5}
\end{equation*}
$$

- Average* acceleration

$$
\begin{equation*}
\bar{a} \equiv \frac{\Delta \nu}{\Delta t} \equiv \frac{v_{2}-\nu_{1}}{t_{2}-t_{1}} \tag{2-7}
\end{equation*}
$$

- Instantaneous acceleration

$$
\begin{equation*}
a \equiv \operatorname{limit}_{\Delta t \rightarrow 0} \bar{a} \equiv \operatorname{limit}_{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} \tag{2-8}
\end{equation*}
$$

(*averaged over Δt)

Table 2-1 in Section 2-2 summarizes the relationships among these quantities and the type of question each quantity addresses.

Graphs of x, v, and a versus t can provide meaningful descriptions of an object's motion. Slopes and vertical intercepts of these graphs have particular meaning. Because the slope always gives a rate of change and the vertical intercept always give an initial value, it follows that

For a graph of ... The slope of a (secant/tangent) gives ... And the vertical intercept gives ...
x versus $t \quad$ (Avg./instantaneous) velocity Initial position
v versus $t \quad$ (Avg./instantaneous) acceleration Initial velocity

For straight lines (uniform slope), the average and instantaneous values are the same. Sections 2-3 and 2-4 provide further guidelines for interpreting graphs of x versus t and v versus t. The tables in those sections summarize key points.

From the definition of average velocity, it follows that

$$
\begin{equation*}
x-x_{0}=\bar{v} t \tag{2-6}
\end{equation*}
$$

which for constant velocity situations becomes

$$
\begin{equation*}
x-x_{0}+v t \quad \text { (uniform motion only) } \tag{2-6u}
\end{equation*}
$$

Whenever the acceleration is constant,

$$
\begin{gather*}
\text { condition for } \tag{2-10}\\
\text { astant acceleration: }
\end{gather*} \quad \bar{v}=\frac{v_{0}+v}{2}
$$

From the definitions, we can use algebraic reasoning to obtain equations of motion that describe the motion of an object under particular conditions. When the condition is constant acceleration,

Equations of motion (kinematic equations) for constant (uniform) a only:

$$
\begin{gather*}
v=v_{0}+a t \tag{2-9}\\
x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \tag{2-11}\\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \tag{2-12}
\end{gather*}
$$

Things to remember when solving problems:

- Make sure you get the picture-sketch the situation.
- Know how the relevant quantities are defined and be able to use the definitions.
- Think first about what is happening-what physical concepts or principles apply to the situation-and let that guide your
choice of equations.
- To further guide your choice in deciding which definitions or principles or other equations relating known and unknown quantities to use, it is generally useful to restate the question in a form that directly connects known and unknown quantities, such as

$$
\begin{equation*}
Q_{1}=? \text { when } Q_{2}= \tag{Form2-1}
\end{equation*}
$$

In words: What is the value of Quantity I when

$$
\text { Quantixy } 2=a \text { known value? }
$$

Measurements made with a sonic range finder demonstrate that there are a range of situations where a is very nearly constant, so that Equations 2-9 through 2-12 are applicable. They can be used, for example, when an object is in free fall, affected only by a gravitational pull. If the upward direction is taken as positive, objects falling freely to Earth have an acceleration $-g$, where g itself is always positive.

Magnitude of gravitational acceleration near Earth's surface

$$
g=9.8(\mathrm{~m} / \mathrm{s}) / \mathrm{s}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

To apply the constant acceleration equations of motion to free fall,

1. If you choose the positive direction to be upward, let $a=-g$ in all the equations (let $a=+g$ if downward is positive).
2. Because we tend to label the vertical axis y, it is common-though not necessary-to replace x with y in all the equations to indicate vertical position.
