PHYS 212, Honors Section, Spring 2011 – Review Material

Part 1/2, Chapters 23-28

Chapter 23: Electric Fields

- <u>Coulomb's law</u>: $F = k q_1 q_2 / r^2 = 1/(4\pi\epsilon_0) q/r^2$, $k = 8.99 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$.
- <u>Fundamental charge</u>: Value of the charge of an electron or proton, $e = 1.60 \times 10^{-19} \text{ C}$.
- <u>Electric field</u>: $\mathbf{E} = \mathbf{F}/q$; For a point charge, $E = k q/r^2 = 1/(4\pi\epsilon_0) q/r^2$.
- <u>Electric field due to a charge distribution</u>: Sum individual contributions or integrate, $\mathbf{E} = k \int (dq/r^3) \mathbf{r}$.

Chapter 24: Gauss' Law

- <u>Electric flux</u>: For constant **E**, flat surface, $\Phi_E = (E \cos \theta) A = \mathbf{E} \cdot \mathbf{A}$. In general, $\Phi_E = \int \mathbf{E} \cdot d\mathbf{A}$.
- <u>Gauss' law</u>: The electric flux through a closed Gaussian surface is $\Phi_E = q_{in}/\varepsilon_0$.
- <u>At the surface of a conductor</u>: It has to be perpendicular to the surface, and its magnitude is $E = \sigma/\varepsilon_0$.
- <u>Large plate</u>: Non-conducting $E = \sigma/2\varepsilon_0$ on both sides; Between plates with opposite charges, $E = \sigma/\varepsilon_0$.

Chapter 25: Electric Potential

- <u>Electric potential energy</u>: As for any conservative force, $U = -W_{PO}$.
- <u>Electric potential</u>: Defined as $V = U/q = -W_{PO}/q$; In terms of **E**, $V(P) = -\int \mathbf{E} \cdot d\mathbf{s}$ and $E_s = -\partial V/\partial s$.
- Examples: For a point charge V = k q/r; Potential energy of a 2-point-charge system $U = k q_1 q_2/r$; For a charge distribution add the single-charge contributions, or set up an integral, $V = k \int dq/r$.

Chapter 26: Capacitance and Dielectrics

- <u>Capacitance</u>: Defined by C = Q/V; For a parallel-plate capacitor, $C = \varepsilon_0 A/d$.
- <u>Capacitor combinations</u>: In series, $C_{eq}^{-1} = C_1^{-1} + C_2^{-1} + \dots$; In parallel, $C_{eq} = C_1 + C_2 + \dots$
- <u>Electric energy</u>: In a capacitor, $U = \frac{1}{2}QV$; Energy density in an electric field $u = U/\text{volume} = \frac{1}{2}\varepsilon_0 E^2$.
- <u>Dielectrics</u>: The permittivity of the vacuum gets replaced by $\varepsilon = \varepsilon_0 \varkappa$; For example, $C = \varepsilon A/d = \varkappa \varepsilon_0 A/d$.

Chapter 27: Current and Resistance

- <u>Electric current</u>: I = dQ/dt, or $Q = \int I(t) dt$; Current density defined by $I = \int \mathbf{J} \cdot d\mathbf{A}$; Also, $\mathbf{J} = ne\mathbf{v}_d$.
- <u>Ohm's law</u>: Relationship between potential difference and current, I = V/R; also $\mathbf{E} = \rho \mathbf{J}$, or $\mathbf{J} = \sigma \mathbf{E}$.
- <u>Resistance</u>: For a uniform block of length L and cross-sectional area $A, R = \rho L/A$.
- <u>Power</u>: In general, P = IV. For current through a resistor, $P = I^2 R = V^2/R$.

Chapter 28: Direct-Current Circuits

- <u>Emf</u>: The amount of amount of work done per unit charge $\mathcal{E} = dW/dq$; With internal resistance $V = \mathcal{E} Ir$.
- <u>Resistor combinations</u>: In series $R_{eq} = R_1 + R_2 + \dots$; In parallel $R_{eq}^{-1} = R_1^{-1} + R_2^{-1} + \dots$
- <u>RC circuits</u>: $\tau = RC$; Charge $V(t) = V_0 (1 e^{-t/RC})$ and $q(t) = Q (1 e^{-t/RC})$; Discharge $V(t) = V_0 e^{-t/RC}$.