PHYS 212, Honors Section - Review Material

Chapter 26: Capacitance and Dielectrics

• Capacitors: General concept and use; The capacitance is defined by

C = q/V.

The unit is the farad, 1 F = 1 C/V.

- <u>Parallel plate capacitors</u>: $C = \varepsilon_0 A/d$, where $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$ as usual is the permittivity constant, related to the coefficient in Coulomb's law by $k = 1/(4\pi\varepsilon_0)$.
- <u>Capacitors in series</u>: The capacitance equivalent to $C_1, C_2, ...$ in series is obtained from

$$C_{\rm eq}^{-1} = C_1^{-1} + C_2^{-1} + \dots$$

• <u>Capacitors in parallel</u>: The capacitance equivalent to C_1, C_2, \dots in parallel is

$$C_{eq} = C_1 + C_2 + \dots$$

- Electric energy: In a charged capacitor, $U = \frac{1}{2} qV$ [same as $q^2/2C$ and $CV^2/2$]. This implies that in an electric field *E* in general, there is an energy density u = U/volume $= \frac{1}{2} \varepsilon_0 E^2$.
- <u>Dielectrics</u>: Materials that become polarized in the presence of electric fields; They modify the values of the *E* fields and potentials produced by charges. As a result, effectively the permittivity of the vacuum gets replaced everywhere by $\varepsilon = \varepsilon_0 \varkappa$, where \varkappa is the dielectric constant. For example, the capacitance of a parallel plate capacitor becomes

$$C = \varepsilon A/d = \varkappa \varepsilon_0 A/d.$$

Note: You are not required to know the topics and equations inside square brackets.

Website by Luca Bombelli <bombelli at "olemiss.edu>; Content of this page last modified on 7 may 2011