Modified Theories of Quantum Gravity  

In General > s.a. BF theory; clifford algebra; newton-cartan theory; Non-Symmetric Gravity; phenomenology; theories of gravitation.
@ Strong-coupling limit: Henneaux et al PLB(82); Pilati PRD(82); PRD(83); Francisco & Pilati PRD(85); Rovelli PRD(87); Husain CQG(88); Kakas CQG(89) [matter]; Gamboa PRL(95) [2D]; Maeda & Sakamoto PRD(96)ht [expansion]; Sakamoto PRD(09)-a0905 [renormalized, and z = 2 Lifshitz point]; > s.a. modified general relativity [classical].
@ Scalar-tensor theory: Pimentel & Mora gq/00 [Bergmann-Wagoner theory]; Zhang & Ma PRD(11)-a1107, JPCS(12)-a1111, FrPh(13)-a1211 [loop quantization]; > s.a. brans-dicke theory; no-boundary wave function; renormalization; scalar-tensor theories [conformal frames].
@ Modified dynamics: Smolin CQG(92) [G → 0]; Broda et al PLB(07) [abelian theory].
@ Other dimensions: Bjerrum-Bohr NPB(04)ht/03 [D → ∞]; Nieto a0704 [8D, background-independent Kaluza-Klein à la lqg]; Nieto RMF-a1003 [8D and (2+2) loop quantum gravity], IJGMP(12)-a1107 [in 2+2 dimensions]; Vaugon a1512 [pure geometry, of signature (–, –, +, ..., +)]; Deser a1609 [1-loop divergences cannot all be removed in D > 4]; > s.a. 2D and 3D quantum gravity; regge calculus.
@ Hořava-lifshitz gravity: Orlando & Reffert CQG(09)-a0905; Shu & Wu a0906 [stochastic quantization]; Visser a0912-conf [power-counting]; Giribet et al JHEP(10)-a1006 [semiclassical]; Briscese et al FP(12)-a1205; D'Odorico et al PRL(14)-a1406 [asymptotic freedom]; Li et al PRD(14)-a1408, a1511 [1+1]; Barvinsky et al PRD(16)-a1512 [projectable theory]; Glaser et al PRD(16)-a1605 [CDT approach]; Bellorín & Restuccia PRD(16)-a1606 [at the kinetic-conformal point]; > s.a. 3D quantum gravity; dynamical triangulations; quantum cosmology.
@ Other theories of gravity: Pagani & Percacci CQG(15)-a1506 [with torsion and non-metricity]; Álvarez & González-Martín JCAP(17)-a1610 [Weyl gravity]; > s.a. classical gravity and theories [incuding vector]; conformal gravity; higher-order gravity; massive gravity; non-local theories; quantum cosmology [varying constants]; teleparallel gravity [lqc approach].

Linearized Gravity > s.a. gravitomagnetism; perturbations / approaches to canonical quantum gravity and covariant quantum gravity.
@ Deformation quantization: Quevedo & Tafoya GRG(05)gq/04; García-Compeán & Turrubiates IJMPA(11)-a1109 [ground state Wigner functional and graviton propagator].
@ Other approaches: Bronstein PZS(36), translation GRG(12); Ashtekar et al PRD(91) [lqg]; Grigore CQG(00)ht/99; Shojai & Shojai PS(03)gq [Bohmian approach]; Bomstad & Klauder CQG(06)gq [projection operator]; Contreras et al a1612 [monoidal representation].
@ Ground state: Kuchař JMP(70) [canonical]; Hartle PRD(84) [Euclidean path integral].
@ Gravitons: Varadarajan PRD(02)gq [loop and Fock space]; Speziale JHEP(06)gq/05 [2-point function from spin foam, 3D model]; > s.a. quantum field theory in curved spacetime [graviton].
@ In cosmological backgrounds: Ford & Parker PRD(77) [FLRW]; Bojowald et al PRD(08)-a0806 [in lqg]; Fewster & Hunt RVMP(13)-a1203.
@ Related topics: Moncrief GRG(79) [linearization instabilities]; Atkins & Calmet PLB(11)-a1003 [coupled to matter, S-matrix unitarity]; Magueijo & Benincasa PRL(11)-a1010 [chiral vacuum fluctuations]; Fewster & Hunt RVMP(13)-a1203 [with a cosmological constant]; > s.a. quantum regge calculus.

Approaches Based on Different Frameworks
* Possibilities: Modify the underlying structure, such as (i) Twistors; (ii) Algebraic approaches, quantum groups, non-commutative geometry; (iii) Finkelstein and other fundamentally quantum approaches (plexars, quantum topology); (iv) Posets, as finite spatial topologies, or as causal sets; (v) Fundamentally discrete approaches.
@ General references: DeWitt & Molina-Paris MPLA(98)ht [from the space of histories]; Delfino et al a1210 [pure-connection formulation, Feynman rules].
@ Bohm / pilot-wave theory: Shtanov PRD(96)gq/95; Goldstein & Teufel in(01)qp/99; Shojai PRD(99)gq, & Golshani IJMPA(98), IJMPA(98)gq/99, & Shojai CQG(04)gq/03; Santini PhD(00)gq [canonical quantum gravity]; Pinto-Neto & Santini GRG(02); Kenmoku et al CQG(02) [3D spherical]; Shojai & Shojai gq/04-proc [lqg]; Shojai et al IJMPA(05)gq [Einstein universe]; Carroll TMP(07) [fluctuations and entropy]; Sverdlov a1010; Vassallo & Esfeld FP(14)-a1308 [discrete]; > s.a. canonical quantum gravity.
@ And other hidden variables: 't Hooft CQG(99)gq [information dissipation].
@ And spectral geometry: Esposito 98-ht/97, ht/97-conf, CM(05)ht/03-proc [Euclidean]; Booß-Bavnbek et al Sigma(07)-a0708 [rev]; Kempf & Martin PRL(08)-a0708 [information theory and cutoffs]; Aasen et al PRL(13)-a1212 [2D case].
@ Causality-based: Schorn CQG(97), CQG(97); Rainer IJTP(00)gq/97, CQG(00)gq/99 [algebraic]; Christensen & Crane JMP(05) [causal sites]; Markes & Hardy JPCS(11)-a0910 [and entropy]; > s.a. causal sets; causality in quantum theory ["causaloids"].
@ Discrete: Holfter & Paschke JGP(03)ht/02 [and Dirac operator]; Gambini & Pullin in(09)gq/05; > s.a. discrete spacetime.
@ Categorical: Crane ht/93, gq/00; Isham ATMP(03)gq, ATMP(03)gq, ATMP(04)gq/03; Isham FP(05)qp/04-in; Baez qp/04; Raptis IJTP(06)gq/04-conf, IJTP(07) [and abstract differential geometry]; Crane gq/06-ch; > s.a. categories in physics; quantum spacetime models.
@ Relational: Corichi et al MPLA(02)gq; Dreyer gq/04-GRF; Raptis IJTP(07) ['third quantization']; Dreyer in(06)gq, PoS-a0710 [internal relativity]; Anderson CQG(09)-a0809.
@ Deformed: Finkelstein LMP(96); Antonsen gq/97; Gavrilik eConf-gq/99 [quantum algebras]; Vacaru IUJP-a0801 [Lagrange-Finsler variables and Fedosov quantization]; de Vegvar EPJC(17)-a1605 [Hopf algebra methods on commutative manifolds]; > s.a. loop representation; modified versions of general relativity.
@ Related topics: Ghosh ht/02 [use all signatures]; Siino ht/06 [algebraic]; Finkelstein IJTP(08)gq/06 [homotopy approach]; Raptis IJTP(06) [Glafka meeting, iconoclastic approaches]; Alfaro et al CQG(11) [two-symmetric-tensor delta gravity]; Gegenberg & Husain CQG(13)-a1210 [solvable model]; > s.a. approaches to quantum gravity [models]; FLRW quantum cosmology; quantum spacetime.
> Other approaches: see bimetric gravity; non-commutative gravity; Topos Theory.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 24 jul 2017